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ABSTRACT 

 

 

Real-time interactive digital sound synthesis has become an increasingly 

important component in a variety of applications including music and video 

games across a variety of platforms from networked computers to mobile phones. 

The paradigmatic approach to interactive sound synthesis can be conceptualized 

as a hierarchical structure with a sound synthesis engine generating sound at the 

lowest level, and a human or automated controller at the highest level. The 

controller generates some number of digital control signals as input to the 

synthesis system, which must be mapped to the parametric control handles of the 

sound synthesis engine. Even with rich synthesis schemes capable of dynamic, 

responsive sounds, inadequate control strategies and mappings can result in dull, 

“mechanical” sonic output.  

 

This project tried to address the issue by proposing a novel control system to 

control the synthesis of sound. The three important modules of the system, the 

communications system, the data-acquisition system and the mapping system are 

designed and developed through this project. The final method yields a control 

system that is able to provide the user, expressive, intuitive and comprehensible 

control over the synthesis of the sound. 
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 CHAPTER 1 

Introduction 

 

1.1 Overview 

This chapter introduces sound synthesis and explores its various forms. It then 

looks at the issues involved in sound synthesis and sound models. It goes on 

expresses the problem statement addressed in this project. This is followed by the 

organisation of the thesis. 

 

1.2 Sound Synthesis 

Digital sound synthesis is the process of electronically generating sound. This 

includes a range of sounds from sounds that already exist in nature to completely 

original sounds. Digital sound synthesis has been a field of much development for 

several years. The advent of new technologies has brought about newer methods 

of synthesis sound. With these new technologies, newer uses for synthesised 

sound have also come about. 

 

There are numerous methods of sound synthesis, based on different principles, 

approaching the process in different domain and perspectives [1, 2, 3]. Many of 

the methods are used to create specific types of sounds, attributing to the features 

of the approach. The more popular methods are FM Synthesis, Additive synthesis 

and Physical Modelling synthesis, which are discussed in the next section 

 

1.2.1 FM Synthesis 

Frequency Modulation (FM) Synthesis is a form of audio synthesis where the 

timbre of a simple waveform is changed by modulating it with a modulating 
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frequency which is also in the audio range, resulting in a more complex waveform 

and a different-sounding tone [4]. From a mathematical perspective, the resultant 

sound wave would obey equation (1).  

))]([2cos()(
0

ττπ dxffats

t

mc∫ ∆+⋅=       - (1) 

Here fc is the original frequency and f∆ xm(τ) is the instantaneous frequency 

deviation caused by the modulation. 

 

1.2.2 Additive Synthesis 

Additive synthesis is a technique of audio synthesis which evolves from the 

concept of musical timbre. Additive synthesis recreates timbres of a specific 

sound by synthesizing numerous waveforms having a pitch of the different 

harmonics in the timbre, shaped by an appropriate amplitude envelope [5]. 

Additive synthesis is based on the Fourier Series. Since each sound can be 

decomposed into an addition of infinite (or finite, depending on the harmonic 

nature of the sound) series of sinusoids, according to the Fourier series; a sound 

can be generated by adding a large number of sinusoids in a calculated fashion. 

Thus the Fourier series equation, (2), governs this method of synthesis.  

 

.....)cos()cos()cos()( 222111000 ++++++= θθθ nfanfanfans   - (2) 

 
Where s(n) is the sound wave being synthesized and the fi are the frequency 

components. 

 

1.2.3 Physical Synthesis 
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Physical synthesis is a newer concept in sound synthesis. It takes a bottom-up 

perspective at the process. Using sets of equations and algorithms, it simulates the 

physical source of sound. Sound is then generated governed by parameters that 

describe the physics of the source and the various actions that can be performed 

on the source [1]. 

 

Physical synthesis is based on the physical knowledge of a sound source. Since 

most sound generating objects can be modelled, especially their acoustic aspect, 

physical synthesis offers an intuitive and yet modularisable method of 

synthesizing sound. Parts of a source can be modelled separately and coupled to 

each other to create the whole source. For example, to model a guitar, the strings 

can be modelled separately to the body, and combined during the synthesis 

process or after it. 

 
 

1.3 Java Synthesis System 

Any type of sound synthesis requires a synthesis system or ‘a synthesis engine’. A 

mathematical engine which does the calculations and logical operations required 

to generate the sounds. 

 

The Java Synthesis System is a sound modelling based synthesis system 

developed by Prof. Lonce Wyse from the Mixed Media Modelling Lab at the 

Institute of Infocomm Research (I2R) [6]. The system allows real-time and 

interactive synthesis of sound based on various techniques, with physical 

synthesis being its main forte. This thesis uses the Java Synthesis System as an 
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example synthesis system to demonstrate the ideas and methodologies developed 

throughout. 

 

The Java Synthesis System uses sound models as an abstract when dealing with 

synthesis techniques. However, the concept of sound models is not restricted to 

the Java Synthesis System and can be used in the study of synthesis techniques 

and tools for better understanding of the subject matter. 

 

1.4 Sound Models 

Sound Models are abstracts used to define a sound producing object, which 

exposes a set of parameters and defines a sound space. Sounds Models can be 

thought of as software analogues of individual Synthesizers, and can be 

considered as a primitive structure in software based synthesis system. 

 

Model can produce sounds using any synthesis technique. They are not restricted 

to use any technique or to use just one technique. In a much wider context, a 

model could just play back a pre-recorded sound on certain activity on a 

parameter. 

 

Each Sound Model exposes a set of parameters. These parameters are the 

properties of sounds which the model produces. For example, a guitar string 

model could have a parameter named ‘string length’, which, when changed, 

would allow the model to produce a sound of a guitar string of the specified string 

length. The type of parameters and the effect of each parameter on the sound 
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produced depends on the type of synthesis technique being used, as well as the 

specific model. The earlier example would probably come from a model using 

physical modelling synthesis technique. Parameters also are the element of 

interactivity in Sound Models. They allow a user to change the sound being 

produced by such a model by performing some activity on some of its parameters. 

 

Each sound model can produce a multitude of sounds. The whole set of sounds 

which can be produced by a specific sound model can be considered to span a 

space of sounds, with the parameters as dimension of the space. Thus, a model 

with n parameters is said to span an n-dimensional parameter sound space.  

 

1.5 Control 

Synthesis allows us to produce a large variety of sounds.  However, in most 

application we need to be able to control the type of sounds produced. Different 

applications require different types of controllers. For example, for a sound 

needed to be synthesised in a computer game, the controller is game software. 

When mimicking musical instruments using synthesis techniques, the controller 

could be hardware based gesture acquisition systems [7].  

 

Synthesis using Sound Models can be controlled using some parameters or 

handles. Such parameters are exposed to the controller of the synthesis system, 

which can be a software controller or a hardware based controller. 

 

1.5.1 Interactive Control 
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Static control might be useful in some cases of synthesis, but in most modern 

applications, there is a need for user based interactive control. Using the earlier 

example of computer games, the game player would generate control data which 

will change the type of sound being produced. For a better example, if the 

computer games includes a car, which can be driven by the user, and the sounds 

produced by the car are being synthesised by an synthesis engine, control 

parameters like the speed and the type of road, would have to change the type of 

sound being produced. Such applications are more common, than those where 

there is no dynamic control from an external entity to the synthesis system as to 

what kind of sound is to be produced. 

 

1.5.2 Gestural Control 

Gestural control is another aspect of control related to sound synthesis, especially 

in terms of musical sound synthesis [7]. Gestural control uses physical gestures by 

human users, like movement of arms and legs, to generate control data. 

 

It has always been regarded as a challenging method of generating control data, 

because of the various types of sensors needed and a large amount of processing 

required before the data could be used. However, with newer technology in 

sensors and gestural data-acquisition, gestural control has become a viable option 

for interactive sound control applications. 

 

1.5.3 Real-Time Control 
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Another aspect to control of synthesis systems, in this project is real-time. From a 

very simplistic perspective, real-time control ensures that any change in the 

control data, is reacted upon immediately by the synthesis system and the sound 

being produced by the system should change immediately. However, in practical 

applications, this definition has to change, since use of delays might change 

response time of the synthesis systems. Furthermore, in some cases delays could 

be required feature of the synthesis system. Thus, the ‘real-time’ness of the 

system should depend on how accurate it is with respect to our expectations or 

design. 

 

1.6 Control in Synthesis Techniques 

Controlling synthesis systems has always been a problem. All the major synthesis 

techniques have their own disadvantages when it comes to a varied use. 

 

While FM synthesis is based on a very simple concept of frequency modulations, 

the synthesis technique is indeed very difficult to control and obtain useful sound 

from. The complexity of the governing equation hinders the use of this technique. 

Much research has been done to use this technique for synthesis applications with 

varied results.  

 

Additive synthesis is an exhaustive technique, and theoretically, it can produce 

any sound algebraically conceivable. However, it is impractical, and is limited by 

the number of frequency components are able to be summed to produce the sound. 



 
 
 
 

8 

This technique suffers greatly when real-time limitations are added to the 

synthesis system. 

 

While physical synthesis systems provide a viable methodology of synthesis, 

offering a wide variety of sounds to be produced and a very fine control on the 

synthesis process itself, the control of such systems can be extremely complex. 

The complexity of the algorithms and the equations involved in the synthesis can 

cause the technique to be difficult to understand, thus limiting the scope of the 

user.  

 

Typically Sound Models using the above techniques expose 20 to 30 parameters 

for the controller to control. This is too far great a number for users to control 

individually. Generally, a human user with a gesture based controller is unable to 

comprehend, and thus control, more than 5-9 handles [8]. Many times, the 

required input control handles available for synthesis are not related directly to the 

synthesis parameters, and thus have to be processed before being passed on to the 

synthesis systems.  

 

Thus, to be able to fully utilise the potential of various synthesis systems, 

effective control systems have to be developed. Control systems which allow 

easier and more effective real-time, interactive, control over the various types of 

synthesis techniques. This thesis proposes a set of novel techniques and tools for 

better control of synthesis systems. 
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1.7 Organisation of Thesis 

The second chapter discusses the approach taken to address the problem defined 

by this thesis. The third chapter looks at the current state of the art for the various 

systems involved in the proposed solution to the problem. The fourth chapter 

discusses the design and the development of the data-acquisition system. The fifth 

chapter discusses the design and the development of the communication sub-

system. The sixth chapter discusses the design and the development of the 

mapping system, the main part of this thesis. The seventh chapter evaluates the 

performance of the system and looks as some example applications of the system. 

The eighth chapter concludes the thesis and suggests topics for future work related 

to this thesis.  
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 CHAPTER 2 

Approach 

 

2.1 Overview 

This chapter looks at the approach to the problem statement, discussed in the 

previous chapter. It discusses the concept of control for synthesis, and the various 

important subsystems of a control system. 

 

2.2 Controlling Synthesis Systems 

A simple interactive synthesis system can be modelled as below. The control data 

flows from the controller through the communication linkage to the synthesis 

engine. The feedback data flows through back from the synthesis engine, to the 

controller.  

 

 
 

Figure 1:Model of a simple interactive synthesis system. 

 

This simple model shows that an effective control of a synthesis system can be a 

challenge. There are many aspects to this challenge. Firstly, an interactive 

controller has to exist which can be used to acquire the right inputs and give 

appropriate feedback to the user. Secondly the communication linkage has to be 

able to transmit both the control as well as the feedback data, with great logical as 

well as temporal fidelity. Finally, the interfaces have to be defined. If the number 

and/or types of control outputs from the controller do not match the parameters 
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exposed by the sounds models in the synthesis engine, there needs to be some 

kind of mapping in order to couple these two systems.  

 

To approach this challenge of developing an effective synthesis control system, a 

generic interactive controller needs to be defined and built to support all tests and 

experimental setups of this system. Also a proper communication mechanism 

needs to be laid out which is capable of supporting such communication at the 

required fidelity. And finally a mapping system needs to be created to allow the 

controller to control the synthesis system effectively. Thus, we can logically 

separate the approach into three subsystems. Each dealing with its own domain, 

and yet coming together as one to form the whole synthesis control system. The 

approaches to individual systems are defined in the following sections.  

 

2.2.1 Interactive Data-Acquisition Subsystem 

An interactive gestural data-acquisition system is the front end of a synthesis 

control system. Otherwise called ‘the controller’, this would consist of sensors 

and some type of processing hardware, and some feedback devices. It would then 

be able to connect with the communication subsystem and deliver the acquired 

control data to the synthesis system. 

 

Complex gestural data-acquisition systems can be considered in this approach. 

These wouldn’t be much different, except for the types of sensors needed, and the 

amount of processing required. For feedback on such controllers, haptic devices 

could be explored as an option. 
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While, large, powerful and expensive data-acquisition systems are widely 

available, such systems are limited in their usages because of their size, power 

requirements and costs. Thus, a low-cost, simple microcontroller based system 

might serve as a useful and practical data-acquisition system, especially in the 

case of this project. Furthermore, with the focus of new technology towards 

embedded devices, such a system can be extendible for the future addition for 

newer technologies. 

 

2.2.2 Communications Subsystem 

The acquired data has to be passed on the data to the synthesis system. This 

requires an efficient and practical communications system. Such a communication 

system should be able to transmit data in different forms, over various mediums, 

with high logical and temporal fidelity, for a generic solution for the problem. 

Templar fidelity of the system is necessary to allow a real-time control of the 

synthesis. Since an embedded microcontroller based solution is being considered 

for the data-acquisition systems, the communication system should also be able to 

support such a system. 

 

Keeping the rapidly changing communication technologies in mind, the 

communication system for such an application has to be extendible for future 

usage, and independent of medium, thus able to work in multiple scenarios, 

including over mediums which might not yet exist. Such a generic system allows 
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this solution to work in many different application environments, across many 

different platforms. 

 

2.2.3 Mapping Subsystem 

The final and the most important part of the control system is the mapping 

subsystem. The control inputs extracted from the data-acquisition system might 

not necessarily correspond to the synthesis parameters. The control inputs need to 

be adjusted for range, number, and type (discrete or continuous) to match the 

synthesis parameters. They may also need to be having various functional 

relationships with synthesis parameters. For example, the ‘volume’ synthesis 

parameter has to change over an inverse square relationship with respect to a 

‘distance’ control input. It is also possible in many cases that the exact nature of 

such a mapping in not known and might need to be dynamic, changing with 

respect to time, or non-deterministic, random in nature. Finally, there can be 

multiple control inputs that affect a single synthesis parameter and vice versa.  

 

To be able to achieve all such types of adjustments and processing that have to be 

done to the control input, a mapping scheme is the effective solution. A generic 

mapping scheme can be conceptualised as a functional relationship between the 

controls input vector and synthesis parameter vector. In 2-dimensions, the 

functional relationship can be visualised as a plane containing functions and the 

control inputs are adjusted using those functions depending their positioning on 

the plane. The following figure, Figure 2, illustrates the idea 
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Figure 2: 2-D Conceptual representation of mapping. 

 

 

The control parameter’s position on the 2-D plane is defined by their values. They 

are mapped to synthesis parameter on another 2-D plane. This is of course a 

simplification for visualisation purposes. Actually mappings may be more 

complex and have dimensional asymmetry, where the synthesis and control 

parameters have different dimensions.  

 

Thus, a mapping scheme, which is able to effectively map various types of control 

input to a given synthesis engine, would form the mapping subsystem. If designed 

and developed well such a system could yield a control system able to make the 

synthesis system produce a variety of sounds, in the most effective and user-

friendly way.  

 

2.3 Modularisation of Control Subsystems 

An important aspect of the approach taken in this project is the modularisation of 

control system. The system is designed to be modular, such that, any of the 

Synthesis System 

Control parameters 

Mapping 

Adjusting Functions 
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modules or subsystems is able to work independently. The above mentioned three 

subsystems can be used in other applications, and thus should not be restricted to 

this specific application. A modular design allows for such development. Figure 3 

illustrates the envisioned modularised control system.  

 

 

Figure 3: Envisioned modularised control system. 

 

However, it should be designed so as not create too many interface layers; as such 

it would slow down the control process itself. Thus would be detrimental to the 

real-time aspect of the control system. 
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The problem of control of physical synthesis systems is approached by defining 

the three important modules, which it should contain. And looking at each 

individual module, its requirements and functionalities, leading to a chain of tools 

corresponding to each module to implement the needed functionalities and fulfil 

the requirements. 
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 CHAPTER 3 

Literature Review 

 

3.1 Overview 

This chapter looks at the current state-of-art and written literature for each of the 

three subsystems defined in the previous chapter. Using this knowledge, a design 

can be discussed for the implementation each of the subsystems.  

 

3.2 Interactive Data-Acquisition 

There exist a number of platforms for developing sensor-based data-acquisition 

systems. These come in a variety of styles and configurations. Most are essentially 

DACs, which convert analog sensor voltages into digital signals and encode them 

according to a communication protocol, and transmit the digital signals over a 

hardware interface. Accompanied by signal conditioned sensors, data-acquisition 

systems offer a straightforward way to do gestural control over digital synthesis 

without any programming and minimal knowledge of electronics.  

 

Jensenius [9] presents an extremely low-cost alternative following the same 

paradigm of a data-acquisition system by using inexpensive, discarded game-

controllers which use the USB Human Interface Device (HID) protocol. They rely 

on readily available HID drivers to interface with music software applications. 

Another low-cost microcontroller-based USB data-acquisition system is described 

in the SensorWiki [10].  

 

Currently available data-acquisition systems for sound synthesis control include 

the I-CubeX [11], Kroonde, Toaster [12], Eobody [13], EtherSense [14], Teabox 
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[15] and WiSe Box [16]. Several features of these systems are compared in Table 

1.  

Table 1: Comparison of selected sound control Data-Acquisition system 

 

System iCubeX Kroonde Toaster Teleo 

Physical 

Connection

(s) 

MIDI, 

Bluetooth 
Ethernet, MIDI Ethernet, MIDI USB 

Data 

Protocol 
MIDI 

OSC(UDP),FUDI,
MIDI 

OSC(UDP),FUDI,
MIDI 

Proprietary 

Max. 

Sample 

Rate (Hz) 

250 200 200 100 

Max. A/D 

Resolution 

(bits) 

12 10 16 10 

No. of 

Analogue 

Channels 

32 16 16 Extendible. 

Cost (USD) 
$400 $1450 $1450 $189 

 

System Eobody EtherSense Teabox WiSe Box 

Physical 

Connectio

n(s) 

MIDI Ethernet SPDIF 802.11b 

Data 

Protocol 
MIDI OSC(UDP) 

Proprietary 
OSC(UDP) 

Max. 

Sample 

Rate (Hz) 

900 1000 4000 200 

Max. A/D 

Resolution 

(bits) 

10 16 12 16 

No. of 

Analogue 

Channels 

16 32 8 16 

Cost 

(USD) 

$575 $1200 $395 $1150 
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More flexible modular systems, such as Teleo [17], also offer analog-to-digital 

modules, in addition to things like generic digital I/O, pulse-width modulation, 

and motor controllers. These can provide a wider variety of modalities of 

interactivity, but require more technical knowledge on the part of the user. The 

hardware on these devices is not directly programmable, but they require some 

amount of programming on the PC to which they interface in order to operate.  

 

Simpler systems, such as the AVR microcontroller system presented in [18] are 

not specifically interactive gestural data-acquisition systems, but rather powerful, 

general-purpose toolsets that can be used in a variety of embedded applications 

including synthesis control. They require programming, as well as some basic 

knowledge of circuits and electronics. Such systems have also been demonstrated 

to produce novel, powerful interactive projects by relatively inexperienced 

designers in short amounts of time [18, 19]. Costs saving of this type of systems 

can also be an important factor for academic institutions and individual 

developers, and especially for this project. 

 

3.3 Communications 

MIDI is currently the most commonly used communication protocol for control of 

sound synthesis. The MIDI standard consists of a communications messaging 

protocol designed for use with musical instruments, as well as a physical interface 

standard. Physically it consists of a simplex digital loop serial communications 

electrical connection which runs as 31,250 baud [20].  
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The MIDI message format consists of 1 to 3 bytes of data, corresponding to an 

instruction to a synthesiser. However, the number of different instructions and the 

number of different channels that can be communicated upon is limited to 16. In 

the context of our synthesis system, each channel would intuitively correspond to 

a specific Sound Model and thus, there is a limitation on the concurrent number of 

models that can be used. Furthermore, the data arguments of the messages are 

restricted to single byte, and cause a reduction of resolution. Thus, MIDI 

communication standards are limited in many aspects. However, MIDI is widely 

supported and libraries and APIs for MIDI message generating software can be 

found easily for various platforms including embedded microcontroller based 

platforms [18].  

 

A newer communication protocol, OpenSound Control (OSC) is an alternative for 

such communications [21, 22]. OSC is an open, transport-layer-independent, 

message-based protocol developed for communication among computers, sound 

synthesizers, and other multimedia devices. The protocol does not define a 

transport layer or any layer lower than the transport layer as in the OSI model 

[23], to be used. And thus the protocol can be used over any of common 

communication transport layers like TCP or UDP and various data-link layers like 

Ethernet or WiFi [24]. This implies that there is no restriction on the speed of the 

communication in the OSC protocol itself, unlike MIDI. The speed is determined 

by the physical layer being used in the specific application. 
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OSC Message format is extendible and not limited like MIDI. It follows URL 

type tree based addressing scheme and supports many data types of arguments. 

Furthermore, multiple arguments are supported for every message, and wild cards 

messages are defined for sending multiple messages efficiently. A query system 

has also been proposed for OSC [25], though it has not been standardised yet. 

Such the query system would allow the communication system to support 

advanced features like two way communication, which could support feedback in 

the controllers, as well as intelligent features like automatic exploration and auto-

configuration of the other subsystems. 

 

Implementations of OSC in different languages for various platforms exist. These 

include JavaOSC in Java [27], flosc in flash [28] OSClib for C [29] and OSC 

library for Max/MSP [30]. Among these implementations, the Java 

implementation of OSC would be more relevant for this project since the 

synthesis system itself is built in Java, thus creating the communication interface 

to the synthesis system would be easier in Java.  

 

JavaOsc is the first implementation of OSC protocol in Java. It supports the 

creation of OSC messages and bundles, and their transmission and reception over 

UDP connection. Received messages are extracted and dispatched to their 

respective OSC Message Handlers. The implementation provides the various data 

types used in OSC Communications and provides the API for software 

applications using JavaOSC. Message dispatching is implemented through call 

back methods using Java Interfaces.  
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3.4 Mapping 

Approaches to control in the form of mapping have existed in fields such as 

control systems [31] for some time. Only since the relatively recent advent of 

practical, interactive real-time digital synthesis has it become applicable to sound 

synthesis.  

 

Over the years, many strategies have been proposed to approach mapping. A 

popular mapping strategy is to define formal deterministic relationships between 

control and synthesis parameters. These strategies are mainly based on techniques 

predominant in control theory, like linear algebra and matrix transformations [32]. 

Such techniques tend to be ineffective for control of sound synthesis as they lack 

the dynamics which are important for synthesis, or tend to be too complex to be 

used in such an application. 

 

Some authors choose to take non-linear and heuristic-driven approaches that lead 

to practical and interesting mapping strategies. These include using spatial layout 

of mapping or weighing functions over a representation of the input space [33] 

and the uses of geometric shapes to define input parameter spaces and mapping 

such shapes to shapes of higher dimensionality [34].  

 

Some of these systems introduce one or more intermediate or "middle" mapping 

layers between control and synthesis parameters. In such schemes, control 

parameters are mapped onto intermediate parameters, which are in turn mapped to 
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synthesis parameters. These intermediate parameters may be arbitrarily-defined, 

may describe some higher-level, perceptual, features of the desired sound [35, 36], 

or may represent some virtual system whose features are mapped onto the 

synthesis parameters. For example, Schatter et al. [37] use a gestural controller to 

manipulate virtual graphics objects, whose features are mapped to synthesis 

controls.  

 

Multiple layered mapping can allow the intermediate mappings to be reused. The 

mapping from the middle layer to the synthesis parameters may remain 

unchanged, while another controller is mapped to the middle layer [38].  Multi-

layered systems are also one way of dealing with the problem of dimensional 

asymmetry. Dimensional asymmetry occurs when the dimension of the input 

control parameters and the output synthesis parameters is not equal. As such, 

mapping can be considered as a dimension reduction problem, and certain 

dimension reduction schemes, like simplical interpolation [39], can be used as a 

mapping strategy. 

 

 
 

 
Figure 4: A Multi-layered Mapping Scheme 
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Though an m-input n-output configurable mapping technique is very generic and 

widely useful, a mapping technique with restricted input dimension is worthy of 

consideration. Furthermore, in most applications, fewer dimensional input spaces 

are sufficient to provide the required control over the synthesis. 

 

Such low input dimension mapping techniques allow users to comprehend and 

explore the mappings in much greater extent. These techniques are also more 

intuitive and thus can lead to more expressive mappings.  One example of this is a 

mapping strategy proposed by Bencina [40]. In the strategy the inputs are 

restricted to a 2-dimensional space. However no restriction is placed on the 

number dimensions of the output. 

 

3.5 Review 

There is a lot of work that has been done in the areas spanned by this project. 

Some of these works provide interesting insights on various theories relevant to 

sound synthesis and its control. Others give interesting ideas and directions for 

development of various techniques.  

 
The knowledge and understanding gained from the review of all these works are 

can be used in the development of the system to tackle the problem of effective of 

digital sound synthesis. 
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  CHAPTER 4 

Data-Acquisition System 

 

4.1 Overview 

This chapter discusses the design and development process of the data-acquisition 

system. Initially, the idea of a microcontroller based data-acquisition system is 

discussed. Then the design of such a system based on a hardware platform is 

discussed with other hardware and software consideration to implementation of an 

easy to use data-acquisition system. 

 

4.2 Microcontroller based Data-Acquisition System 

The mobility, low power and low memory requirements, low cost and ease of 

interface with sensors and other devices makes microcontroller a viable solution 

for data-acquisition for control of synthesis.  

 

The idea is to have a microcontroller based controller with a number of 

improvements for sound synthesis control and a toolset to go along with the 

controller. This system has the benefit of low-cost, ease of programming and 

flexibility. While it does require programming, a simple API can be provided for 

the user, which may be combined with existing software libraries to greatly 

simplify the task. For communicating the acquired data the use of Ethernet 

communication would ensure compatibility with a variety of existing or custom 

software applications on many operating systems. 

 

4.3 Hardware  
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The main hardware components of this system are a microcontroller and a 

network interface chip (NIC) for Ethernet communication. Ethernet is the most 

simple and easily available form of data-link layer which can support the required 

communication. These can reside on a single, inexpensive, commercially 

available development board, like EDTP Easy Ethernet AVR [41]. In the 

following discussion of the hardware and software of such platforms, the many 

features of this system that give users the ability to develop new interactive 

devices related to data-acquisition systems are highlighted. 

 

4.3.1 Microcontroller 

The Atmel AVR microcontroller family is an 8bit RISC processor with a well-

defined I/O structure. The maximum clock speed of this family is now 24MHz on 

some devices, offering 24 MIPS. The AVR series feature Harvard architecture, 

with separate self-programmable Flash program memory and SRAM sections. 

The microcontrollers come with embedded Analogue-to-Digital converters 

(ADCs) and other communication protocols like I2C and SPI [41].  

 

The AVR series [41] includes many devices with different capabilities. An open-

source gcc compiler and C libraries offer mostly transparent code portability 

between devices, and make development of software easy. Hardware development 

platforms also offer smooth transitions between devices within the family, in the 

need of extending the capabilities by using a microcontroller with larger memory 

or more features.  
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Development boards, such as Procyon Engineering’s AVRMini [42] are available 

for prototyping, and testing AVR microcontroller. The AVRMini is a complete 

development board with convenient pin headers and sockets to access 

microcontroller’s I/O ports, pin-protecting resistor packs, LEDs and pushbuttons. 

The AVRMini can also be interfaced with an LCD display with the onboard LCD 

controller. This can be useful for interactive applications for the controller. 

 

4.3.2 Ethernet Controller  

The AVR microcontrollers need an Ethernet controller to communicate using 

TCP/IP or UDP/IP. The core of the Ethernet controller consists of a NIC. The NIC 

can connect to the AVR via its extended SRAM interface or using general I/O 

pins. Several convenient packages allow for a NIC to be easily interfaced to an 

AVR.  

 

The EDTP Easy Ethernet AVR [43], a development board which includes an 

AVR microcontroller, Realtek RTL8019AS NIC [44], R3-232 chip and RJ45 

network cable connector is a viable solution. The RTL8019AS supports full-

duplex communication and the 10BaseT Ethernet standard. It interfaces to the 

AVR using one of its 8-bit ports for data as well as another 9 pins for addressing 

and control. Other NIC based development boards are also widely available life 

the, the EDTP NICholas [43] which uses the 10/100BaseT ASIX AX88796L NIC 

[44], providing greater speed.    

 

4.4 Software  
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AVR microcontrollers are supported by excellent development tools and software 

libraries. These are supplemented by simple libraries for building applications that 

include sending and receiving OSC messages over Ethernet. This will be 

discussed in details in the section 5.4. 

 

4.4.1 Development Tools 

AVR devices can be programmed in C, using a specialized open-source gcc 

compiler. The avr-gcc compiler is supported by an array of software tools, 

including an AVR version of the standard C library, the GNU debugger and 

simulators. Both open-source and propriety development environments exist for 

Windows, Macintosh and Linux [45, 46, 47].  

 

4.4.2 AVRLib 

The Procyon AVRLib is a thorough and well-documented GPL-licensed library 

providing high-level access to basic AVR functions like timing and ADC, as well 

as methods for interfacing with external devices such as LCDs, GPS, hard drives, 

mp3 chips and accelerometers [41]. 

 

4.4.3 Ethernet drivers 

Well written drivers are also available for most of the NICs. Mostly written in C, 

these can be configured and cross-complied using avr-gcc to run on the target 

microcontrollers.  

 

4.5 Microcontroller based interactive data-acquisition 
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Thus a simple microcontroller based interactive data-acquisition system can be 

developed with easily available hardware, tool-chain and a small amount of 

programming. A variety of sensors can be attached to this system for the intended 

application, and the system can be programmed to do the required processing on 

the data before passing it to the synthesis system over Ethernet.  

 

This system allows for a simple, low cost, easy to build, and easy to program 

solution for data-acquisition. Such a solution is versatile as well as robust for 

many different types of application in sound synthesis control. Further more it 

allows for a great control over the acquisition and processing of data. 
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 CHAPTER 5 

Communication Subsystem 

 

5.1 Overview 

This chapter discusses the design and development process of the Communication 

system. Firstly, the use of OSC as the communication protocol is discussed. Then 

the design and the development of the Java OSC Extension implementation of 

OSC are examined. And finally, an overview of the OSC communication system 

on the AVR-Mini based data-acquisition systems is done. 

 

5.2 OSC Communication System 

OSC is the most appropriate communication system for the type of control 

applications required. It is extendible and medium-independent. Most of the 

implementation of OSC in various languages and on various platforms is 

complete and easily implementable. 

 

The JavaOsc implementation, however, has a few limitations. JavaOsc [27] is a 

based on a single thread and thus risks the loss of messages in certain conditions. 

Furthermore, it uses linear searching algorithms for parsing. These searches are 

slow and tend to reduce the speed at which a message can be dispatched. 

Moreover, the package as a whole is somewhat difficult to use and lacks a clear 

and intuitive interface. Finally, a lack of documentation for the API requires 

examining source code in order to understand how to use it. 
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Since target synthesis of this project is in Java, the Java implementation of the 

communication system needs to be complete and practical. Thus, an extension to 

JavaOsc is designed and developed. 

 

5.3 Java OSC Extension(JOE) 

5.3.1 Design of JOE 

JOE is an attempt to build upon the design of JavaOsc and improve in the areas it 

lacks. JOE is based on an OSC Server design as defined in the OSC 

specifications. This OSC Server is responsible for extracting, parsing and 

dispatching any OSC Messages that it reads from a UDP socket. Any application, 

such as a synthesis engine, requiring the use of the OSC server, instantiates the 

OSCServer class and listen for the OSC Address Patterns that they are interested 

in. Once an OSC Packet is received, the server extracts the contents, parses the 

OSC Address and dispatches the message to the application if it has registered to 

be listening for such an address. 

 

Thus, the OSC Sever consists of three major sections; a) the receiver and 

extractor, b) the parser and c) the dispatcher (see Figure 5). The three functions 

are mutually independent and can be separated into individual threads of 

execution. 

 

Sending of OSC Messages does not require a server and can be done directly by 

the application at any given moment. This functionality is left unchanged from the 

original JavaOsc implementation. 
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Figure 5: Multi-threaded structure of the OSCServer. 

 

5.3.1.1 Message Handling 

The original JavaOsc is based on a single thread. The fetching and parsing, as well 

as the dispatching are all done in the same thread. This can lead to incoming OSC 

Messages being missed, since the server does not have a chance to receive the 

next message until the current message is completely dispatched. If a certain 

synthesis engine has a dispatch callback method that takes a long time to execute, 

then by the time the thread returns to allow the server to retrieve the next message 

from the buffer, it may have been already overwritten by yet another following 

message. 

 

To overcome this problem, JOE is made multithreaded. It has separate threads to 

receive new OSC Messages, and to parse the incoming message. The threads are 

linked through a queue that transmits OSC Message data structures to the parsing 

thread. This reduces the amount of time a message needs to wait before it is 

fetched, and thus the likelihood that it will be overwritten by another incoming 

message.  
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Incoming message bundles can be time-stamped (described later in more detail). 

If an OSC Bundle is received which is time-stamped to be dispatched in the 

future, the messages in the bundle are queued into a synchronized priority queue. 

In this queue, the priority is defined by the dispatch time. The OSC Message with 

the earliest dispatch time has the greatest priority. This queue links to another 

thread, which waits and dispatches the messages on time. In the case of an OSC 

Bundle that arrives later than its stipulated dispatch time, the synthesis engine can 

configure the server to either dispatch it immediately or discard it. 

 

5.3.1.2 Argument Handling 

JOE supports all the Atomic Data Types defined in the OSC specification. It also 

supports other commonly used argument types like 64-bit Integer, 4 byte 

character, TRUE/FALSE, and 64-bit Double. Type tag strings are enforced and 

messages without type tags are discarded. This is necessary since in such a 

generic implementation of OSC, it is impossible to predict the type of an 

argument.  

 

Since the arguments are stored in Java Objects of the various types, they are 

dispatched as a Java Object array. JOE provides helper methods in the abstract 

listener class to discover and retrieve the type of the arguments passed on to the 

synthesis engine. 

 

5.3.1.3 Parsing 
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The original JavaOsc implementation uses a heap data structure to store the OSC 

Address Space – simple list of all of the addresses the application handles. The 

elements of the heap are then individually read and compared to the incoming 

OSC Message's OSC Address Pattern. This linear storage and comparison is 

inefficient in terms of the amount of comparisons needed to reach the desired 

element. JOE addresses this limitation with a better data structure used to store the 

parsing strings. 

 

Furthermore, JavaOsc implements strict string matching using the isEqual() 

method on strings treating OSC wildcards as string literals. This means that the 

use of wildcards is not supported by the server so that the synthesis engine has to 

handle them.  

 

5.3.1.3.1 Tree Based Storage Structure. 

JOE uses tree type data-structures to store the addresses spanning the OSC 

Address Space. OSC Addresses have similar syntax to URLs and thus span a tree-

like address space. Implementation of such a space using a tree data-structure is 

not only intuitive, but also efficient. A Multi-Way tree, a generic N-nary tree, is 

used in JOE to keep track of the Address Space (See Figure 6). Such 

implementation reduces the number of comparisons needed to reach the element 

of interest. 
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Figure 6: Multi-way Tree Structure. 

 

Since multiple addresses might match an incoming message, the unordered list of 

addresses used in JavaOsc also means that the whole list must be traversed for 

matches to each incoming message. In JOE, the ordered insertions of new 

addresses allow further improvement on traversal complexity, since lexicological 

comparisons allow searches to complete without traversing the entire tree.  

Although these increases the time necessary for insertions, insertions are typically 

done prior to real-time operation, and when they are not, they are still generally 

far less frequent than search traversals, so that this strategy yields a better overall 

performance. 

 

5.3.1.3.2 Intelligent OSC Parsing 

JOE parses the OSC Address Patterns of incoming OSC Messages intelligently. 

OSC Address Patterns can contain wildcards as defined by the OSC 

Specifications. Such wildcards can match to multiple addresses.  JOE uses regular 

expressions to match the OSC Address Patterns to nodes in the address space. 

/root 

/child1 /child2 /child3 

/grandchild1-1 /grandchild2-1 

 

/ggrandchild2-2-1 

  : Linked List 

  : Child 

/grandchild2-2 
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However, since the syntax for wildcards in OSC and regular expressions is 

different, JOE converts the OSC wildcards into the equivalent regular expressions 

wildcards. This allows for simple and elegant matching algorithms. 

 

JOE also handles brackets in OSC Address Patterns. Brackets are opened up by 

the parser and converted into individual strings without the brackets. They are 

then parsed individually. Address patterns with incomplete or incoherent brackets 

are discarded. 

 

Implementation of wildcards and brackets allows for the creator of the address 

space to be abstracted from the knowledge of the OSC Address format and 

especially the significance of wildcards. Wildcards permits the controller to send 

fewer messages and yet attain the same effect. 

 

5.3.1.4 Blobs 

An OSC Blob is a data type used to support a generic array of binary data. It is 

one of the Atomic Data Types defined in the OSC specification. Blobs, however, 

are not supported by JavaOsc.  

 

Blobs are useful to applications that need to implement unsupported data types 

and extend the capabilities of OSC. The OSC Blob is implemented in JOE as a 

Java class. It is also supported as an argument to the OSC message and 

appropriately extracted out to the argument array. 
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5.3.1.5 Time Tags and Dispatching 

OSC uses OSC Time Tags to define when a certain message gets dispatched. 

JavaOsc does not handle time tags by itself. Time tags are extracted and handed 

over to the synthesis engine to be dealt with.  Some real-time synthesis engines 

may not be capable of handling time-stamped events, and furthermore, if a 

message is sent to multiple synthesis engines, then the dispatching effort must be 

duplicated in each of them.   

 

JOE handles time tags on the server. Messages tagged to be dispatched at future 

times are held in a queue and dispatched at a later time from within JOE itself. 

Synthesizers can optionally request that future events be sent immediately when 

JOE receives them.  

 

5.3.1.5.1 OSC Time Tags 

Time Tags are only attached to OSC Bundles. The time tags are based on the NTP 

Timestamp protocol [49] and represent a range of 136 years with a resolution of 

236 picoseconds. Using time tags, a controller can attain fine grain temporal 

control over the synthesis engine, even if the delivery mechanism does not 

guarantee temporal accuracy. 

 

Nested bundles cannot have time tags indicating earlier dispatch time than the 

parent bundle. In JOE, such messages are considered erroneous and discarded. In 

some cases it might be necessary to ignore Time Tags. This configuration option 

on the server is available to the user. 



 
 
 
 

38

 

5.3.1.5.2 Java Date Object and Accuracy 

In JavaOsc, Time Tags are internally represented by a Java Date object which 

uses a millisecond resolution. This allows the easy implementation of time tag 

comparison while dispatching. The drawback of the conversion is the loss of 

accuracy compared to the NTP timestamps. 

  

In most synthesis environments, however, accuracy of events of up to a 

millisecond is adequate. Furthermore, since these time tags are compared with a 

reference clock, the clock itself has to provide time with as much accuracy as the 

time tag. Java’s system time clock relies on the operating system for time keeping. 

Generally, operating systems do not generally provide clocks with greater than 

millisecond accuracy making the NTP picoseconds information irrelevant. 

   

5.3.1.5.3 Synchronization of Clocks 

For the effective use of time tags, the clocks across the participating platforms 

involved have to be synchronized. This question does not arise when the control 

application and the synthesis engine are on the same physical machine.  

 

Protocols like NTP allow accurate synchronization of system clock to the internet 

time servers. Most of the modern operating systems have the feature of allowing 

such synchronization. However, NTP synchronization can be hampered by 

network transport layer delays and thus can only provide accuracy of about 

300ms. 
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These problems can be avoided by sending OSC Messages well in advanced such 

that they will reach the OSC Server well before they have to be dispatched. 

 

5.3.1.5.4 Late Dispatching 

Late dispatching of messages is required when a parsed message is found to have 

a time tag with a future dispatch time. Such messages are stored in a priority 

queue and dispatched when their time comes. The dispatching is done by the late 

dispatch thread. The thread checks the highest priority element in the queue at a 

frequency of one millisecond, and waits for its dispatch time to arrive before 

dispatching it to the application. 

 

5.3.1.6 Listeners and Interfaces 

The OSC Server communicates with the synthesis engine through listeners. 

Listeners are a standard Java feature used to implement callback methods. JOE 

uses the same type of listeners as JavaOsc, the OSCListner interface.  

 

When the synthesis application wants to receive a certain OSC Message, it 

registers a listener with the OSC Server. This listener will be activated by the 

OSC Server when that specific message arrives.  

 

The OSC Server allows dynamic registration and de-registration of listeners. It 

also supports multiple listeners for an individual address. This allows the same 
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OSC message to be dispatched to different parts of the same synthesis engine, or 

even different synthesis engines.  

 

Listeners are easily implemented using Java Interfaces. JOE uses the OSCListner 

interface defined in JavaOsc. This backward compatibility allows most 

applications using JavaOsc to switch to JOE with minimal change.  

 

5.4 OSC on AVR-Mini  

Since the AVR-Mini based data-acquisition platform supports C language 

programming, the OSC library for C [29] can ported to that platform without 

much efforts. However, for an easy to use application of the data-acquisition 

systems, an API is developed.  

 

This API provides a simple interface for building an application that sends and 

receives OSC messages in UDP packets over Ethernet from an AVR 

microcontroller. This can be combined with powerful AVRLib functions to create 

a device able to generate and send OSC messages based on sensor inputs or other 

processes. It is based on uIP-AVR v0.90 and the reference OSC library [29]. uIP-

AVR is a port of uIP, an open-source TCP/IP stack designed to provide 

connectivity to embedded 8-bit microcontrollers. It supports many of the basic 

Internet communication protocols like TCP, UDP, ICMP, and ARP.  

 

5.4.1 MOE API 
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The Microcontroller OSC Ethernet (MOE) API provides an interface to shield the 

details of the uIP stack, NIC drivers and network protocols from the user. A single 

header file contains flags and configuration options including the port addresses 

used to interface to the NIC, maximum number of connections, local and remote 

IP addresses and UDP port numbers. It is configured by default to work with the 

Easy Ethernet AVR board. 

 

The user has to implement two functions, and is given guarantees of their 

execution time and order. The app_init() can be used to initialize the application 

internal and external components. The app_main() function is called in a tight 

loop by the uIP stack, as fast as the execution speed permits. Library functions 

allow the user to check if OSC messages were received, and to bundle and send 

OSC messages. The following 8-line example program is an 8-channel data-

acquisition system sending 10-bit ADC values as OSC in UDP packets. 

 

 

Figure 7: A simple microcontroller program. 

 

5.4.2 API and Library 

OSCbuf osc_buf;        // OSC buffer  
char type[] = ",ii";        // OSC type string 
char msg[] = "/sensor";    // OSC address 
 
for (i=0; i<8; i++) {  
OSC_writeAddrAndTypes(&osc_buf,msg,type); 

OSC_writeIntArg(&osc_buf,i);  
OSC_writeIntArg(&osc_buf,a2dconvert10bit(i));  
sendOSCBuf(&osc_buf); 
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The choice of an API implementation for the embedded OSC software provides 

some constraints over the types of applications that the user can develop. 

Compared to a straight API-less function library, there are limitations imposed by 

the structure of the program. Other complex network tasks such as DHCP for IP 

address acquisition or serving web pages via HTTP are entirely possible with this 

hardware and software, but are excluded from the MOE API. This is chosen to 

limit the networking paradigm for the sake of simplicity, but leave the full power 

of the microcontroller’s memory, timing, ADC, hardware and peripheral 

interfaces available for complex sensing and feedback tasks. A library 

implementation would make advanced network tasks available alongside these, 

but would require the user to understand and construct a complete network stack 

from scratch or modify an existing one. 

 

5.4.3 Capabilities of MOE API 

The benefits of a simple API implementation justify the constrained functionality. 

A software library alone would render the system simply unusable for many users. 

The Microcontroller OSC Ethernet (MOE) API provides a robust interface with a 

fast learning curve that limits the possibility of errors. The user does not require 

any detailed knowledge of the inner workings of the network stack in order to use 

the API. These components are available for inspection, but do not require 

modification. Since the MOE API is built on top of open-source software 

libraries, the underlying system code and libraries are always present for advanced 

users in order to build their own customized network systems.  
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In addition to the powerful microcontroller features it makes available, the MOE 

API also still offers more options than are available on many other data-

acquisition systems, in spite of its constraint. It includes support for multiple UDP 

connections with different hosts or different ports on the same host. The OSC 

addresses and message formats are customizable, and it can send OSC bundles 

with timetags. Support for multiple incoming connections is also available.  

 

Parsing of incoming OSC messages is presently not provided, but can be made 

available. One caveat of receiving OSC is that string operations can significantly 

slow down processing time; however, using short messages and simple OSC 

address spaces the delay can be avoided and ‘real-time’ness ensured.  

 

There is significant overlap between the functionalities of uIP-AVR and MOE. 

For the sake of creating a simpler API some parts of uIP-AVR were either 

removed were extracted as configurable options at compile time. TCP support is 

one such example. Most OSC-capable PC applications only support UDP as the 

data-link layer protocol [23]. This is because it requires less overhead and users 

are willing to accept the risk of packet loss for the sake of faster, unverified 

delivery. TCP functions are available in MOE and may be included by setting a 

configuration flag. Excluding TCP support saves a significant amount of code 

space for the user’s application. 

 

5.5 OSC Communications 
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OSC can be used as a communication system for such control purposes. OSC can 

be implemented on various platforms, in various languages with different foot 

print sizes. And yet, it allows great control over the communication of the control 

and feedback data over all its implementations.  
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 CHAPTER 6 

Java Mapping Tool 

 

6.1 Overview 

This chapter looks at the mapping subsystem. First it looks at how mappings can 

be evaluated. Next, a novel mapping technique is discussed. Finally, the 

implementation and a tool created to generate such mappings are discussed.  

 

6.2 Creating and using Mappings 

An important separation exists between, making and using the maps, which needs 

to be addressed. The tool being developed should allow the creation, audition as 

well as the use of the maps or ‘mappings’. The map has to be created, by a user, or 

‘the creator’. It can be auditioned while being created. The map can then be used 

by the same user or by someone else, ‘a user’.  

 

6.3 Mapping as transformations 

Through out the literature about mapping, a basic idea can be seen repeatedly, 

described in various ways. Mapping is the transformation of data from one 

domain to another. The way this transformation is done is dependent on the 

mapping scheme being used. However, there are three important aspects the 

transformation which can be extracted as being important in for this project. 

Mapping is the transformation from control parameters to synthesis parameters. 

Mapping is the transformation form a low dimensional control space to a high 

dimensional control space. And finally, mapping is a transformation from a 

Perceptual Sound Space to a Parameter Space. The model in figure 8 exemplifies 

these three concepts.  
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The Sound Space is the perceptual sound space as a human user envisions the 

synthesis system exposing. This is the space of all sounds which the user’s idea of 

the synthesis system can produce, and their relation with each other.  

 

The Control Space a space of control signals or control data which the user should 

have to input via the controller, either gestural or otherwise, to produce the types 

of sounds he believes he can get. This should directly correlate with the perceptual 

sound space, so that the user can easily control the synthesis.  

 

The Parameter Space is the space exposed by the sounds models in the synthesis 

engine for control. This space can be, and is generally different from the Control 

Space and might not correlate, in dimensions, or data types. A mapping should 

transform the control data from Control Space to the Parameter Space. 

 

 
 

Figure 8: Conceptual Representation of Mapping 
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6.4 Evaluating Mappings 

Three important criteria can be defined for analyzing mappings: complexity, 

expressivity, and intuitiveness. There is certainly a strong relationship between a 

mapping technique and the degrees to which these properties are reflected in the 

mappings that are generated. One could conceive of quantitative metrics for 

assessing these, but this is beyond scope of this thesis. These can be left as 

subjective assessments in order to create a vocabulary for discussing and 

informing the design of mapping techniques.  

 

The complexity, especially the computational complexity of mappings, is an 

important factor when designing mapping for a real-time audio synthesis engine. 

Complexity can be conceived as related to the number of computational or logical 

steps required to generate a synthesis parameter from an input control change. 

Expressivity refers to the ability of the user to generate a rich variety of sonic 

output from the synthesizer, under deliberate control. Mappings resulting in 

output that on one hand might “always sounds the same” or on the other hand feel 

“random” or “uncontrollable” from the user's perspective are not expressive. 

Intuitiveness in a mapping can be seen as related to the user's mental model of the 

mapping [50]. If the user requires only a simple conception of how the mapping 

works, then it can be considered intuitive. With an intuitive mapping, the 

perceptual sound space conforms closely to the parameter space of the sound 

model. 
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These three criteria are not always independent.  Intuitive mappings are more 

likely to be expressive since the user can more easily comprehend the system. 

Excessively non-complex mappings are likely to be intuitive, since the user may 

be able to have a complete mental model of exactly how the system works (a 

“surrogate model”, in Young's [51] terms). However, these may not be expressive 

at all. Take the following system for example: two knobs generating 0-5V control 

signals which are independently mapped to frequency (20-20000Hz) and 

amplitude (0-90dB) of a sine wave oscillator. This mapping is extremely intuitive, 

which means to say, a novice user can comprehend it almost instantaneously and 

very simple, but not likely to be very expressive, at least to a new user. 

 

In spite of these apparent relations between the criteria, a number of similar 

examples easily show that they are not deterministic, and therefore the criteria 

must also be considered independently. For example, complex mappings may in 

fact be quite intuitive. Imagine a hypothetical control system that extracts vectors 

of 3-D position data over time, based on the position of a user's finger in space. 

This position data is mapped to parameters of a speech synthesis system that 

“speaks” based on the letters that are being drawn in the air. This requires an 

extremely complex mapping, probably first mapping the position data to letters, 

and then mapping these to a large number of synthesis parameters in order to 

generate speech sounds. However, it is quite intuitive; all the user needs to do is 

write in the air, and the mapping converts it to speech. And such a system is 

capable of a broad range of expression. Obviously, the complexity of such a 
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system is beyond anyone's present capability (at least to produce human-sounding 

speech). 

 

Strategies involving linear algebra and matrix transformations [32] are generally 

complex as well as unintuitive, form the user’s perspective. However, the 

expressiveness of such mapping is undeniably exhaustive, as with such 

transforms, one can describe any linear relationship between the input and output 

space.  However, such relationships are difficult for the user to conceive, and thus 

even more difficult to manipulate and explore. 

 

Multi-layered systems are often successful at making complex mappings more 

intuitive. They can provide the user with a more useful conceptual model than 

what a direct mapping to synthesis parameters may provide. 

 

The goal in creating a successful mapping strategy is to achieve an optimal 

combination of the three criteria. A good mapping strategy should be intuitive and 

should produce expressive mappings, with the least amount of complexity 

possible in the mapping, but no less. These criteria should not only guide the way 

the mapping tool is designed from the user’s perspective, but also how it is 

designed from the creator’s perspective. 

 

6.5 Parameterized Morphing  

Morphing is a process used widely in image processing. It is used in animations 

and motion pictures to change from one image to another through a seamless 
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transition. This is generally achieved by interpolating between certain common 

features in the initial and final images. 

 

Audio morphing normally describes the generation of a transition between two 

segments of recorded or synthesized audio. As in image morphing, it is normally 

achieved by interpolating between sets of features that are determined after the 

sound has been rendered, based on analysis of the audio signal in the time, 

frequency, or perceptual domains. For example, Slaney [52] describes a technique 

for morphing between sounds by interpolating between extracted spectral shapes 

and pitch. 

 

6.5.1 Morphing in Parameter Space 

With parametric, real-time synthesis, one can appropriate the term morphing and 

extend its application to interpolation in the domain of the synthesis parameters 

themselves, since they are available at the time of sound generation [53]. If for a 

particular synthesis model, sound A can be specified by a vector of parameters PA, 

and sound B  can be specified by a vector of parameters PB, then a morph between 

A and B can be generated by interpolating between PA and PB. Of course, the 

extent to which this creates a perceptual morph depends on the nature of the 

model and on the interpolation functions.  

 

6.5.2 Mapping by Parameterized Morphing 

This concept of parameter-space morphing can be used in the context of mapping. 

The basic mapping scheme follows. For any synthesis model, sets of parameters 
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are defined in advance, corresponding to particular desirable or interesting points 

in the model's sound space. A pair of parameter sets can be chosen and set to be 

the end points for the morph. The morphing control then chooses the extent to 

which each of the parameter sets contribute to the output of the mapping. The 

following figure shows a simplistic model of this concept. 

 

 
 

Figure 9: Simple model of morphing 

 

This is achieved by with the use of some interpolating function between each 

common parameter in the parameter sets. The user can also set the parameters at 

the end point dynamically, thus exploring the synthesis space. 

 

This scheme leads to a 3-n mapping, where the mapping takes in the 2 discrete 

control inputs, and a continuous control input, and yields any number of 

continuous synthesis parameter outputs. The 2 discrete control inputs are used to 

choose which parameter sets are to be the end points of the morph, by indexing 

them from a list. The continuous input, a slider, then determines the extent of the 

morph. (See Figure 9) 
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6.5.3 Interpolation 

A simple linear interpolation scheme will reduce the mapping to a simple range 

modification function and thus, limit the utility and expressivity of the mapping. 

For example, while synthesizing the sound of a helicopter, if the desired control 

parameter of the mapping is the distance of the listener from the helicopter, the 

relationship between the input and the volume parameter of the model needs to 

follow the inverse square law.  If the interpolation is limited to simple linear 

schemes, such common scenarios would not be addressable. Thus, a need for non-

linear interpolation schemes arises. 

 

An interpolation scheme in morphing determines the output value of a certain 

feature, or parameter in sound synthesis, according to the two values being 

interpolated between. In the general case, the mathematical expression for the 

interpolation would be. 

 

BAO PsPsP
rrr

⋅+⋅−= )())(1( ηη  (1) 

 

Where )(xη  is the non-linear weighting function for the input, AP
r

 & BP
r

 are the two 

parameter sets to be morphed between, s is the normalised value of the slider and 

OP
r

 the output of the morphing. The following figure shows a conceptual 

representation of the parametric morphing concept. 
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Figure 10: Conceptual Representation of Mapping 
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of the generated synthesis parameters into a protocol and format supported by the 

receiving application. See Section 6.7.5 for further details of the implementation.  

 

6.6.1 Partitioning and Maplets 

An extension to the morphing scheme arose from the need to have more control 

over the mapping. If all the parameters are considered to span an n-dimensional 

space, then each parameter set of length m defines a (n-m) dimensional subspace 

of the original n-dimensional space. Morphing between two such parameter sets, 

the output defines a sequence of (n-m) dimensional spaces. Parameter sets allowed 

the shrinking of the output parameters space dimension from n to (n-m), however, 

the remaining (n-m) output parameters become uncontrollable. Furthermore, this 

scheme cannot produce divergent mappings as defined by Rovan et al. [54].  

 

To address both these limitations, concept of maplets is introduced. Maplets are 

objects which contain the ability to do a single parameterized morph as discussed 

in section 6.5.2 . A complete map can contain one or more maplets. 

 

Maplets are based on the idea of partitioning the set of all output parameter into 

groups of parameters that are related, especially in their dynamics with respect to 

input parameters. For example, all parameter which change exponentially over a 

certain input parameter can be grouped together. Such groups can be assigned to 

individual maplets, thus, allowing each group to have its individual morphing 

functionality and inputs. maplets serve as the atomic mapping entity. 
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Furthermore, maplets allow having multiple pairs of parameter sets to be morphed 

over simultaneously. This is useful when controlling complex sound models with 

multiple sets of parameters closely related in their behaviour. This feature is also 

needed when different interpolation functions are needed to map different groups 

of parameters. For example, when controlling a sound model of a car, it is 

effective to control all the parameter related to the tyres separately from all the 

parameters related to the engine. 

 

Finally, multiple maplets allow a single mapping to control multiple unrelated 

models using a single or multiple set of controls. Thus allowing single input to 

single model mappings, as well as mappings where single input can control 

multiple models. Such a scheme allows greater exploration of the sound space 

exposed by the models, and still keeps the mapping intuitive. Divergent mappings 

can also be generated by this scheme [54]. 

 

6.7 Implementation 

A tool was developed to build mappings using the parameterized morphing 

discussed above. The aim in the development of such a tool is to have a user 

friendly and intuitive means for designing mappings, and to test the practicality 

and verify the concept of the mapping scheme. 

 

6.7.1 Java 

Java was chosen as the development language for this project. Java has grown 

significantly in scope and in popularity over recent years. Its mobility and 
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portability have been incentives for its use in the development of a wide variety of 

applications for servers, PCs and mobile devices. The choice of using Java is 

mainly influenced by the ease of creation of Graphical User Interface (GUI) in 

Java and the available resources in Java for communication with other systems. 

Furthermore, the Java Synthesis System is written in Java [6], thus a Java based 

mapping tool can integrate easily with the synthesis system. 

 

6.7.2 Modularity 

Modularity is important in the design of the system, since many of the subsystems 

are individual components that can be used on their own in a variety of mapping-

related applications. In order not to restrict further development of any of these 

subsystems and the ability to work autonomously, under various situations, a 

completely modular approach is taken in the development of this tool. 

 

The core mapping functionalities are separated from the communication 

subsystem and the GUI. The core mapping functionality contains the interpolating 

and morphing logic of the mapping. It contains the maplets, the pre-defined 

parameter sets and the interpolation functions. However, it has no user interface 

and is only accessed through method calls. This helps to keep the core small and 

computationally efficient. Furthermore, such a module can easily be embedded 

into a synthesis system or models in a model based synthesis systems.  

 

The communication subsystem is based on Java Interfaces, which are provided in 

various places in the core to allow communication subsystem to be attached to the 
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core. The communication subsystem, often referred to as the I/O interface, can be 

designed and implemented by the user according to the type of communication 

required by the application. For example, if the tool needs to communicate with a 

microcontroller based gesture acquisition system, which can output data as MIDI 

messages, then the mapping needs a MIDI I/O interface that can identify MIDI 

messages related to the inputs exposed by the mapping and call the required 

methods. 

 

 

Figure 11: Structure of the Mapping Tool 

 

 

The GUI allows the user to use the tool interactively. It provides functionality to 

test the mapping that are created and attach interfaces to the mappings. It also 

gives the user a view of the current state of the system and the ability to store and 

load maps dynamically. This is done using the serializable property of classes in 

Java. As such, mappings can be interactively generated using the GUI and saved. 

They can then be loaded into other systems, including systems on which having a 

GUI is not possible. 
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6.7.3 Sound Models 

The tool uses the abstract concept of sound models for mapping sounds. Every 

parameter being control by the tool needs to have some physical correspondence, 

such that it can be controlled effectively. This is attained by forcing each 

parameter to be a part of a sound model. Thus, sound models are logical 

representations of physical sound models that are being controlled by the 

mapping. They may or may not correspond to actual Sound Models (see section 

1.4). Such models also allow modularisation of complex physical sound models as 

they can be mapped to multiple sound models in the context of the tool, thus 

making the partitioning of parameter sets simpler and straight forward. 

 

6.7.4 Interfaces and OSC 

The mapping core itself is designed to only communicate using method calls. 

Thus, there is a need to allow various forms of interfaces in order to use the 

mapping scheme in various applications, especially with plethora of synthesis 

systems and controllers available to be supported. Since most of these systems 

communicate with their own protocols, it seems reasonable to allow the user to 

implement an interface and attach it to the mapping tool. Such interfaces form the 

Pre-Mapping and Post-Mapping layers (See Figure 4). 

 

In addition, an OSC based interface is developed as the default interface system 

for the tool. OSC provides a simple, extensible and transport-layer-independent 

protocol for communications [22]. Such a protocol is useful to support 
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communication with various other software and hardware platforms, including 

synthesizers, microcontroller based data-acquisition modules and hardware 

controller platforms. Furthermore, the availability of OSC libraries on many 

platforms and in many languages, allows for easier development of interfaces on 

the synthesiser [28, 29, 30]. JOE was used to create the Input Interface for the 

mapping tool. 

 

6.7.5 GUI 

With intuitiveness and expressivity of mapping an important feature of this 

scheme, a simple and easy to use GUI, is required. This GUI allows the user to 

visualize the various elements of the mapping and also to interact with these 

elements in real-time. Figure 12 shows screenshot of the main GUI screen. 

 

6.7.5.1 Maplets List 

The maplet list GUI gives the user a view of the currently active maplets in the 

core. It shows which parameter sets are selected in each of the maplets. It also 

shows the current value of the slider, using a slider graphical object. This 

graphical representation of the maplet, tries to conform to the mental idea of a 

maplet, thus making the mapping more intuitive to the user. 

 

The maplet list GUI also allows the user to interact with the map. The user can 

change the Slider and the Parameter Sets that are being used and hear the 

difference real-time since the output is computed at every change of the GUI. 

There is also additional functionality in the maplet lists to allow the user to 
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decouple the GUI from the core. This allows the user to change the GUI and yet 

not affect core and vice-versa. This functionality can also prove useful as a trigger 

utility, by pre-setting the sliders and parameter sets and then coupling the GUI and 

the core. 

 

 

Figure 12: GUI Main Screen. 
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Creating parameter sets is an important part of this mapping scheme. The GUI 

allows the user to create parameter sets corresponding to particular desirable or 
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to create a mental model [50] with the help of the sound created by these 

parameter sets. 

 

6.7.5.3 Interface Maker 

The interface maker allows the user to set up the input and output interfaces for 

the mapping. Since the default interface uses OSC, this GUI element is 

specifically implemented to setup an OSC interface. This interface also 

implements a pre-mapping layer, which allows the input value of the slider to be 

to be normalised so that natural range of the controllers can be accommodated. 

This is achieved by forcing the user to set a minimum and maximum value of the 

expected input. The value is normalised internally before being passed on to the 

core. This ensures correctness of data being fed to the core. 

 

6.8 Mapping 

The mapping tool, called Java Mapper, developed during this project, implements 

the mapping technique of parameterised mapping proposed by this project. The 

technique yields a novel approach to mapping, which is intuitive, expressive and 

yet not too complex. The tool allows the users to create and use the various types 

of mappings generated. The various components of the tool are developed to 

allow for easy creation and flexible usage of the mappings. 
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 CHAPTER 7 

Evaluation 

 

7.1 Overview 

In this chapter the, implemented systems are evaluated based on their performance 

under testing situations. Consequently, an application usage of the whole system 

is discussed.  

 

7.2 Performance  

7.2.1 Data-Acquisition System 

The performance of the data-acquisition system depends on the resolution of the 

sensors, the frequency of sampling and the speed at which data can be processed. 

The resolution of the sensors depends on the type of sensor and the ADC, if any is 

used. The sampling frequency and the processing speed depend on the 

microcontroller.  

 

To test the performance of the data-acquisition system, a test application was built 

using the Easy Ethernet AVR with an ATmega32 and MAX127 I2C ADC [55] to 

do a single channel of ADC and send out the result as OSC over UDP. The 

conversion result was encoded as an argument to a single OSC message. The 

average incoming message rate measured over a period of several minutes was 

over 1300Hz. While the raw ADC conversion speed of the internal ADC was 148 

kHz.  

 

Sampling rates such as these suffice the target usage of the system. Thus, the 

microcontroller based data-acquisition system performed as expected while 



 
 
 
 

63

running the OSC based communication protocol and using internal as well as 

external ADCs. 

 

7.2.2 JOE 

Performance tests were done to compare the performance of JOE with JavaOsc, 

since the aim was to improve the performance of JavaOsc. In these tests, a test 

application was created to set up the OSC Server and register several dummy 

listeners. These listeners simulated the processing time taken to handle a message 

by waiting for a random amount of time and then printing out the integer 

argument of the message received. On a different machine, OSC Messages were 

sent out using pd [26]. Pure Data (pd) is a real-time graphical programming 

environment for audio, video, and graphical processing known for solid timing 

characteristics. Each message was given an integer argument according to its 

sending order. This allowed us to check if all the messages arrived at receiver.  

Using this setup, the ability of JOE and JavaOsc to handle a barrage of messages, 

including those with wildcards triggering multiple dispatches, delivered at various 

rates was tested.   

 

JavaOsc fails to receive messages in certain cases. It was observed that when the 

periodicity of incoming messages is greater than the time taken to dispatch a 

message, packets are lost. Initially for a few packets there were no lost packets, 

however, after some time (depending on the rates of sending and dispatching) 

some packets failed to arrive. 
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Java Socket classes allow messages to be buffered internally. However, when 

these buffers overflow, older messages are overwritten by new ones. Such 

overflows are bound to happen when the processing time of messages is longer 

than the rate at which they arrive. The large size of these buffers allows temporary 

resolution of the problem, but prolonged usage will definitely lead to message 

loss. On PC or Mac based platforms, the problem can often be addressed by 

increasing the buffer size. However, on mobile platforms where memory is not 

freely available, small buffer sizes could be an issue. 

 

Using JOE, under no circumstances were any messages lost, even with wildcards 

that triggered multiple dispatches. When Time Tags with “future” times were 

used, JOE delivered messages to applications with the targeted millisecond 

accuracy.   

 

7.2.3 Java Mapper 

The performance of the Java Mapper is a subjective concept, and dependent on 

many external factors like the controller and synthesis systems. It might work well 

with certain type of synthesis system and even specifically certain models. There 

is no quantitative analysis that can be done to evaluate the performance of Java 

Mapper. However, the mapping scheme can be evaluated, using the criteria 

defined in Chapter 6. 

 

7.2.3.1 Multi-Layered Mappings 
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The parameterized morphing based implementation represents a multi-layered 

strategy, in that the notion of parameter sets represents an intermediate construct 

between the input and output parameters. One feature of this, as Wanderley [7] 

highlights, is that the mappings themselves, from parameter sets to synthesis 

parameters, can persist regardless of the input parameters. Parameter sets can also 

be reused in different maps and maplets. From the user's perspective, the concept 

of parameter sets also simplifies the mental representation of a potentially large 

space of synthesis parameters. Once parameter sets representing desirable points 

in the synthesis space have been defined in an off-line process, the user can ignore 

the target parameters themselves, and rather conceive of two sounds and a morph 

between them, thus making the mapping intuitive. 

 

7.2.3.2 Convergent and Divergent Mappings 

Mappings can be classified as one-to-one, convergent and divergent [53]. A good 

mapping scheme allows for all three types of mappings to be defined. The 

parameterized morphing based mapping scheme, allows one-to-one, as well as 

divergent mapping. However, it is unable to produce a convergent mapping. Such 

a mapping does not fit easily into the morphing framework used in this mapping 

scheme. If there is indeed a need for simple convergent mapping to be coupled 

with this mapping scheme, they can easily added as the pre-mapping layer to this 

mapping scheme.  

 

7.3 Application 

7.3.1 Microcontroller based Controller and a Mapping Server 
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To showcase the usability of the whole tool chain and as a proof of concept, an 

application was setup to use all the parts of the control system. A prototype AVR 

microcontroller based data-acquisition system, was the front end of the control. It 

provided knobs and buttons as interfaces to the user to control the synthesis. The 

communication was done over OSC. The microcontroller created OSC messages 

corresponding to the change of every interface, and sent them over Ethernet.  

 

This was connected to a PC running the Java Mapper server. The server was pre-

configured, by auditioning and listening to the sounds of various parameter sets 

on the same system. The server read the inputs using JOE and mapped them to the 

corresponding outputs. Every time incoming OSC message caused an output 

parameter to change, another OSC message was created and sent over Ethernet to 

another PC. This machine ran the Java Synthesis System. JOE was attached as its 

communication front end. Thus the messages were parsed and the synthesis 

parameter manipulated. Figure 11 shows a representation of the system setup. 

 

 

Figure 13: Representation of the first setup 
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This setup showcased the ability of the system to remotely as well as effectively 

control the synthesis. This also proved that the system especially the mapping was 

able to work as a distributed system, on various platforms. The various modules 

of the control system were able to work synchronously and without any glitches. 

 

7.3.2 Software Controller and an Embedded Mapping 

Another setup was tested, using software based controller, and an embedded 

mapping scheme. The software based controller was implemented using pd on a 

PC. A pd patch was created which output OSC messages according to the inputs 

that can be changed using the GUI. For testing purposes, a human user manually 

changed these values. The OSC messages were sent out over Ethernet to the same 

PC, using a localhost feedback. Although other method of transmission of OSC 

messages could have been used, this was the simplest and did not require any 

changes to the systems. Figure 14 shows a representation of the system setup. 

 

 

Figure 14: Representation of the second setup 
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The OSC messages were received by Java Synthesis System with JOE as the 

communication front end. The mapping was embedded inside one of the sound 

models loaded by Java Synthesis System. This mapping was created using the 

Java Mapper tool, using its GUI. It was saved as a file and loaded inside Java 

Synthesis System while creating one of the models. This new model itself 

controlled multiple smaller models using the mapping, which it defined. 

 

This application showcases the flexibility of the implementation of the mapping 

scheme as well as the flexibility of the communication system. The system allows 

the mapping to be stand alone server on remote systems as well as embedded into 

models to produce higher level sound models which can be used by the synthesis 

system itself to gain better control over the synthesis. 
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 CHAPTER 8 

Conclusion 

 

8.1 Conclusion 

Synthesized sound has a lot of potential to become a standard in many audio 

applications, from multimedia and games to compression techniques. However, 

the nature of most types of synthesis techniques makes synthesis difficult to 

control. The sheer number of parameters and their possible lack of direct 

relationship to tangible abstracts in the domain of the user is the limiting factor of 

the practicality of most synthesis techniques.  

 

This thesis address this issue by designing and developing a control system that 

offers a more expressive and intuitive control over synthesis. This is achieved by a 

novel approach to mapping of parameters, using a parameterized morphing 

technique. Coupling this with appropriate communication and data-acquisition 

systems, yields a flexible and yet effective control system. The modular design of 

such systems allows for usage of these systems in other areas related to synthesis. 

This also allows further development of each of these systems since they are not 

limited by other functionalities.  

 

In conclusion, with better control techniques, sound synthesis can be used to attain 

its potential to offer newer and better sound and audio experiences.  

 

8.2 Further Work 
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The modular design of the systems allows them to be improved individually, and 

still work in unison. The suggestions for future work on these systems are 

discussed individually. 

 

8.2.1 Data-Acquisition System 

Subsequent to the development of the system, especially MOE, several 

components of uIP-AVR have also been extracted and incorporated into the latest 

release of the AVRLib. The consistently clean and efficient libraries of AVRLib 

can help improve the readability and efficiency of MOE. This could also offer 

greater capabilities to MOE. 

 

There is also a possibility of using interrupt based function calls to emulate 

multiple application threads, rather than polling in a tight loop. Synchronization of 

the tightly-coupled threads is a major hurdle that needs to be overcome. The use 

of lightweight “protothreads” which have recently implemented for AVR can be a 

potential alternative implementation. 

 

8.2.2 JOE 

There are a few areas for improvement that can be looked at in further work for 

JOE. Clock synchronization of the various platforms on which the system can run 

is necessary for accurate control of synthesis. This could be done by using NTP 

and having the OSC Server keep its own high resolution clock. Drift needs to be 

addressed in this case.  
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The speed of parsing can also still be improved. Using more efficient data 

structures and some data structure conversions mechanisms such as converting 

Multi-Way trees to Binary trees, the increased speed of parsing, especially for 

very large address spaces, would make a difference.   

 
Other areas of improvement include adding support for automatic exploration and 

configuration of JOE systems over a network, to allow plug-and-play type 

capabilities for such devices. Methods for this are discussed further in the next 

section. 

 

8.2.3 Java Mapper 

One of the possible refinements is to allow user specification of the interpolation 

function. A tool that allows users to graphically specify the shape of the 

interpolator in real-time will be a useful addition to the tool chain.  

 

Currently, the OSC interface that can be attached to the core in Java Mapper must 

be manually specified by the user. This can extended with a tool that can 

automatically explore the OSC address spaces of both the controller and 

synthesizer. In the case of the synthesizer, the tool could generate an internal 

representation of the sound models and their parameters, based on the OSC 

address space. This will be a key application for the implementation of a proposed 

OSC query scheme [25]. 

 

Another improvement to the Java Mapper is a better, and more user friendly GUI, 

with simple yet useful addition like colour coding of parts for an intuitive use of 
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the GUI, default OSC message address configuration and movable windows for 

ease of use. 
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