
Control Strategies in Real-Time Interactive Digital Sound Synthesis

Submitted by
Chinmay Prafulla Pendharkar

Department of Electrical & Computer Engineering

In partial fulfilment of the
requirements for the Degree of
Bachelor of Engineering

National University of Singapore

 i

ABSTRACT

Real-time interactive digital sound synthesis has become an increasingly

important component in a variety of applications including music and video

games across a variety of platforms from networked computers to mobile phones.

The paradigmatic approach to interactive sound synthesis can be conceptualized

as a hierarchical structure with a sound synthesis engine generating sound at the

lowest level, and a human or automated controller at the highest level. The

controller generates some number of digital control signals as input to the

synthesis system, which must be mapped to the parametric control handles of the

sound synthesis engine. Even with rich synthesis schemes capable of dynamic,

responsive sounds, inadequate control strategies and mappings can result in dull,

“mechanical” sonic output.

This project tried to address the issue by proposing a novel control system to

control the synthesis of sound. The three important modules of the system, the

communications system, the data-acquisition system and the mapping system are

designed and developed through this project. The final method yields a control

system that is able to provide the user, expressive, intuitive and comprehensible

control over the synthesis of the sound.

 ii

ACKNOWLEDGMENTS

I would like to thank Prof. Lonce Wyse for his valuable guidance and advice

throughout the course of the project. I would also like to thank Prof. Ng Chun

Sum for supervising me on the project. I also express my gratitude to Michael

Gurevich from I2R’s Mixed Modelling Lab, for his help, guidance and support

during this project. I thank Mr. Lim Sheng Hwee for his help as well as reviews of

certain part of the project. I would also like thank Institute of Infocomm Research

for allowing me to use their resources for the project.

 iii

CONTENTS

ABSTRACT .. i

ACKNOWLEDGMENTS.. ii

CONTENTS .. iii

LIST OF FIGURES.. vii

LIST OF TABLES .. viii

LIST OF SYMBOLS AND ABBREVIATIONS .. ix

 CHAPTER 1.. 1

1.1 Overview.. 1

1.2 Sound Synthesis ... 1

1.2.1 FM Synthesis.. 1

1.2.2 Additive Synthesis ... 2

1.2.3 Physical Synthesis.. 2

1.3 Java Synthesis System ... 3

1.4 Sound Models .. 4

1.5 Control ... 5

1.5.1 Interactive Control ... 5

1.5.2 Gestural Control ... 6

1.5.3 Real-Time Control ... 6

1.6 Control in Synthesis Techniques ... 7

1.7 Organisation of Thesis ... 9

 CHAPTER 2...10

2.1 Overview...10

2.2 Controlling Synthesis Systems ...10

2.2.1 Interactive Data-Acquisition Subsystem...11

2.2.2 Communications Subsystem ...12

2.2.3 Mapping Subsystem..13

2.3 Modularisation of Control Subsystems...14

2.4 Control Tool Chain and Synthesis ..15

 iv

 CHAPTER 3...17

3.1 Overview...17

3.2 Interactive Data-Acquisition...17

3.3 Communications ...19

3.4 Mapping..22

3.5 Review ..24

 CHAPTER 4...25

4.1 Overview...25

4.2 Microcontroller based Data-Acquisition System ..25

4.3 Hardware...25

4.3.1 Microcontroller ...26

4.3.2 Ethernet Controller..27

4.4 Software..27

4.4.1 Development Tools ...28

4.4.2 AVRLib...28

4.4.3 Ethernet drivers ...28

4.5 Microcontroller based interactive data-acquisition ...28

 CHAPTER 5...30

5.1 Overview...30

5.2 OSC Communication System ...30

5.3 Java OSC Extension(JOE) ..31

5.3.1 Design of JOE ...31

5.3.1.1 Message Handling ...32

5.3.1.2 Argument Handling...33

5.3.1.3 Parsing...33

5.3.1.3.1 Tree Based Storage Structure. ...34

5.3.1.3.2 Intelligent OSC Parsing ...35

5.3.1.4 Blobs ...36

5.3.1.5 Time Tags and Dispatching...37

 v

5.3.1.5.1 OSC Time Tags ...37

5.3.1.5.2 Java Date Object and Accuracy...38

5.3.1.5.3 Synchronization of Clocks...38

5.3.1.5.4 Late Dispatching..39

5.3.1.6 Listeners and Interfaces...39

5.4 OSC on AVR-Mini ...40

5.4.1 MOE API ..40

5.4.2 API and Library ..41

5.4.3 Capabilities of MOE API ..42

5.5 OSC Communications ..43

 CHAPTER 6...45

6.1 Overview...45

6.2 Creating and using Mappings ...45

6.3 Mapping as transformations..45

6.4 Evaluating Mappings ..47

6.5 Parameterized Morphing...49

6.5.1 Morphing in Parameter Space ...50

6.5.2 Mapping by Parameterized Morphing...50

6.5.3 Interpolation ..52

6.6 Additional Features...53

6.6.1 Partitioning and Maplets ...54

6.7 Implementation ...55

6.7.1 Java ...55

6.7.2 Modularity...56

6.7.3 Sound Models ...58

6.7.4 Interfaces and OSC ...58

6.7.5 GUI ...59

6.7.5.1 Maplets List...59

6.7.5.2 Parameter Set Maker ...60

 vi

6.7.5.3 Interface Maker ...61

6.8 Mapping..61

 CHAPTER 7...62

7.1 Overview...62

7.2 Performance ..62

7.2.1 Data-Acquisition System ..62

7.2.2 JOE..63

7.2.3 Java Mapper ..64

7.2.3.1 Multi-Layered Mappings...64

7.2.3.2 Convergent and Divergent Mappings..65

7.3 Application ...65

7.3.1 Microcontroller based Controller and a Mapping Server..65

7.3.2 Software Controller and an Embedded Mapping ..67

 CHAPTER 8...69

8.1 Conclusion ..69

8.2 Further Work ..69

8.2.1 Data-Acquisition System ..70

8.2.2 JOE..70

8.2.3 Java Mapper ..71

REFERENCES ..73

 vii

LIST OF FIGURES

Fig. 1 Model of a simple interactive synthesis system. 10

Fig. 2 2-D Conceptual representation of mapping. 14

Fig. 3 Envisioned modularised control system 15

Fig. 4 A Multi-layered Mapping Scheme 23

Fig. 5 Multi-threaded structure of the OSCServer 32

Fig. 6 Multi-way Tree Structure 35

Fig. 7 A simple microcontroller program 41

Fig. 9 Simple model of morphing. 51

Fig. 10 Conceptual Representation of Mapping. 52

Fig. 11 Structure of the Mapping Tool. 57

Fig. 12 GUI Main Screen. 60

Fig. 13 Representation of the first setup 66

Fig. 14 Representation of the second setup 67

 viii

LIST OF TABLES

Table 1: Comparison of selected sound control Data-Acquisition system 18

 ix

LIST OF SYMBOLS AND ABBREVIATIONS

ADC Analogue to Digital Converter

API Application Programming Interface

ARP Address Resolution Protocol

DAC Digital to Analog Converter

DHCP Dynamic Host Configuration Protocol

GNU GNU’s Not Linux

GUI Graphical User Interface

GPL GNU Public License

GPS Global Positioning System

HID Hardware Interface Device

HTTP Hyper Text Transfer Protocol

ICMP Internet Control Message Protocol

IP Internet Protocol

I/O Input-Output

JOE Java OSC Extension

LCD Liquid Crystal Display

MIDI Musical Instrument Digital Interface

MIPS Million Instruction Per Second

MOE Microcontroller OSC Ethernet

NIC Network Interface Card

NTP Network Time Protocol

OSC Open SoundControl

RISC Reduced Instruction Set Computer

SRAM Static Random Access Memory

TCP Transfer Control Protocol

UDP User Datagram Protocol

USB Universal Serial Bus

1

 CHAPTER 1

Introduction

1.1 Overview

This chapter introduces sound synthesis and explores its various forms. It then

looks at the issues involved in sound synthesis and sound models. It goes on

expresses the problem statement addressed in this project. This is followed by the

organisation of the thesis.

1.2 Sound Synthesis

Digital sound synthesis is the process of electronically generating sound. This

includes a range of sounds from sounds that already exist in nature to completely

original sounds. Digital sound synthesis has been a field of much development for

several years. The advent of new technologies has brought about newer methods

of synthesis sound. With these new technologies, newer uses for synthesised

sound have also come about.

There are numerous methods of sound synthesis, based on different principles,

approaching the process in different domain and perspectives [1, 2, 3]. Many of

the methods are used to create specific types of sounds, attributing to the features

of the approach. The more popular methods are FM Synthesis, Additive synthesis

and Physical Modelling synthesis, which are discussed in the next section

1.2.1 FM Synthesis

Frequency Modulation (FM) Synthesis is a form of audio synthesis where the

timbre of a simple waveform is changed by modulating it with a modulating

2

frequency which is also in the audio range, resulting in a more complex waveform

and a different-sounding tone [4]. From a mathematical perspective, the resultant

sound wave would obey equation (1).

))]([2cos()(
0

ττπ dxffats

t

mc∫ ∆+⋅= - (1)

Here fc is the original frequency and f∆ xm(τ) is the instantaneous frequency

deviation caused by the modulation.

1.2.2 Additive Synthesis

Additive synthesis is a technique of audio synthesis which evolves from the

concept of musical timbre. Additive synthesis recreates timbres of a specific

sound by synthesizing numerous waveforms having a pitch of the different

harmonics in the timbre, shaped by an appropriate amplitude envelope [5].

Additive synthesis is based on the Fourier Series. Since each sound can be

decomposed into an addition of infinite (or finite, depending on the harmonic

nature of the sound) series of sinusoids, according to the Fourier series; a sound

can be generated by adding a large number of sinusoids in a calculated fashion.

Thus the Fourier series equation, (2), governs this method of synthesis.

.....)cos()cos()cos()(222111000 ++++++= θθθ nfanfanfans - (2)

Where s(n) is the sound wave being synthesized and the fi are the frequency

components.

1.2.3 Physical Synthesis

3

Physical synthesis is a newer concept in sound synthesis. It takes a bottom-up

perspective at the process. Using sets of equations and algorithms, it simulates the

physical source of sound. Sound is then generated governed by parameters that

describe the physics of the source and the various actions that can be performed

on the source [1].

Physical synthesis is based on the physical knowledge of a sound source. Since

most sound generating objects can be modelled, especially their acoustic aspect,

physical synthesis offers an intuitive and yet modularisable method of

synthesizing sound. Parts of a source can be modelled separately and coupled to

each other to create the whole source. For example, to model a guitar, the strings

can be modelled separately to the body, and combined during the synthesis

process or after it.

1.3 Java Synthesis System

Any type of sound synthesis requires a synthesis system or ‘a synthesis engine’. A

mathematical engine which does the calculations and logical operations required

to generate the sounds.

The Java Synthesis System is a sound modelling based synthesis system

developed by Prof. Lonce Wyse from the Mixed Media Modelling Lab at the

Institute of Infocomm Research (I2R) [6]. The system allows real-time and

interactive synthesis of sound based on various techniques, with physical

synthesis being its main forte. This thesis uses the Java Synthesis System as an

4

example synthesis system to demonstrate the ideas and methodologies developed

throughout.

The Java Synthesis System uses sound models as an abstract when dealing with

synthesis techniques. However, the concept of sound models is not restricted to

the Java Synthesis System and can be used in the study of synthesis techniques

and tools for better understanding of the subject matter.

1.4 Sound Models

Sound Models are abstracts used to define a sound producing object, which

exposes a set of parameters and defines a sound space. Sounds Models can be

thought of as software analogues of individual Synthesizers, and can be

considered as a primitive structure in software based synthesis system.

Model can produce sounds using any synthesis technique. They are not restricted

to use any technique or to use just one technique. In a much wider context, a

model could just play back a pre-recorded sound on certain activity on a

parameter.

Each Sound Model exposes a set of parameters. These parameters are the

properties of sounds which the model produces. For example, a guitar string

model could have a parameter named ‘string length’, which, when changed,

would allow the model to produce a sound of a guitar string of the specified string

length. The type of parameters and the effect of each parameter on the sound

5

produced depends on the type of synthesis technique being used, as well as the

specific model. The earlier example would probably come from a model using

physical modelling synthesis technique. Parameters also are the element of

interactivity in Sound Models. They allow a user to change the sound being

produced by such a model by performing some activity on some of its parameters.

Each sound model can produce a multitude of sounds. The whole set of sounds

which can be produced by a specific sound model can be considered to span a

space of sounds, with the parameters as dimension of the space. Thus, a model

with n parameters is said to span an n-dimensional parameter sound space.

1.5 Control

Synthesis allows us to produce a large variety of sounds. However, in most

application we need to be able to control the type of sounds produced. Different

applications require different types of controllers. For example, for a sound

needed to be synthesised in a computer game, the controller is game software.

When mimicking musical instruments using synthesis techniques, the controller

could be hardware based gesture acquisition systems [7].

Synthesis using Sound Models can be controlled using some parameters or

handles. Such parameters are exposed to the controller of the synthesis system,

which can be a software controller or a hardware based controller.

1.5.1 Interactive Control

6

Static control might be useful in some cases of synthesis, but in most modern

applications, there is a need for user based interactive control. Using the earlier

example of computer games, the game player would generate control data which

will change the type of sound being produced. For a better example, if the

computer games includes a car, which can be driven by the user, and the sounds

produced by the car are being synthesised by an synthesis engine, control

parameters like the speed and the type of road, would have to change the type of

sound being produced. Such applications are more common, than those where

there is no dynamic control from an external entity to the synthesis system as to

what kind of sound is to be produced.

1.5.2 Gestural Control

Gestural control is another aspect of control related to sound synthesis, especially

in terms of musical sound synthesis [7]. Gestural control uses physical gestures by

human users, like movement of arms and legs, to generate control data.

It has always been regarded as a challenging method of generating control data,

because of the various types of sensors needed and a large amount of processing

required before the data could be used. However, with newer technology in

sensors and gestural data-acquisition, gestural control has become a viable option

for interactive sound control applications.

1.5.3 Real-Time Control

7

Another aspect to control of synthesis systems, in this project is real-time. From a

very simplistic perspective, real-time control ensures that any change in the

control data, is reacted upon immediately by the synthesis system and the sound

being produced by the system should change immediately. However, in practical

applications, this definition has to change, since use of delays might change

response time of the synthesis systems. Furthermore, in some cases delays could

be required feature of the synthesis system. Thus, the ‘real-time’ness of the

system should depend on how accurate it is with respect to our expectations or

design.

1.6 Control in Synthesis Techniques

Controlling synthesis systems has always been a problem. All the major synthesis

techniques have their own disadvantages when it comes to a varied use.

While FM synthesis is based on a very simple concept of frequency modulations,

the synthesis technique is indeed very difficult to control and obtain useful sound

from. The complexity of the governing equation hinders the use of this technique.

Much research has been done to use this technique for synthesis applications with

varied results.

Additive synthesis is an exhaustive technique, and theoretically, it can produce

any sound algebraically conceivable. However, it is impractical, and is limited by

the number of frequency components are able to be summed to produce the sound.

8

This technique suffers greatly when real-time limitations are added to the

synthesis system.

While physical synthesis systems provide a viable methodology of synthesis,

offering a wide variety of sounds to be produced and a very fine control on the

synthesis process itself, the control of such systems can be extremely complex.

The complexity of the algorithms and the equations involved in the synthesis can

cause the technique to be difficult to understand, thus limiting the scope of the

user.

Typically Sound Models using the above techniques expose 20 to 30 parameters

for the controller to control. This is too far great a number for users to control

individually. Generally, a human user with a gesture based controller is unable to

comprehend, and thus control, more than 5-9 handles [8]. Many times, the

required input control handles available for synthesis are not related directly to the

synthesis parameters, and thus have to be processed before being passed on to the

synthesis systems.

Thus, to be able to fully utilise the potential of various synthesis systems,

effective control systems have to be developed. Control systems which allow

easier and more effective real-time, interactive, control over the various types of

synthesis techniques. This thesis proposes a set of novel techniques and tools for

better control of synthesis systems.

9

1.7 Organisation of Thesis

The second chapter discusses the approach taken to address the problem defined

by this thesis. The third chapter looks at the current state of the art for the various

systems involved in the proposed solution to the problem. The fourth chapter

discusses the design and the development of the data-acquisition system. The fifth

chapter discusses the design and the development of the communication sub-

system. The sixth chapter discusses the design and the development of the

mapping system, the main part of this thesis. The seventh chapter evaluates the

performance of the system and looks as some example applications of the system.

The eighth chapter concludes the thesis and suggests topics for future work related

to this thesis.

10

 CHAPTER 2

Approach

2.1 Overview

This chapter looks at the approach to the problem statement, discussed in the

previous chapter. It discusses the concept of control for synthesis, and the various

important subsystems of a control system.

2.2 Controlling Synthesis Systems

A simple interactive synthesis system can be modelled as below. The control data

flows from the controller through the communication linkage to the synthesis

engine. The feedback data flows through back from the synthesis engine, to the

controller.

Figure 1:Model of a simple interactive synthesis system.

This simple model shows that an effective control of a synthesis system can be a

challenge. There are many aspects to this challenge. Firstly, an interactive

controller has to exist which can be used to acquire the right inputs and give

appropriate feedback to the user. Secondly the communication linkage has to be

able to transmit both the control as well as the feedback data, with great logical as

well as temporal fidelity. Finally, the interfaces have to be defined. If the number

and/or types of control outputs from the controller do not match the parameters

Controller

Synthesis

Engine

Communication

Linkage

Feedback Data

Control Data

Feedback Data

Control Data

11

exposed by the sounds models in the synthesis engine, there needs to be some

kind of mapping in order to couple these two systems.

To approach this challenge of developing an effective synthesis control system, a

generic interactive controller needs to be defined and built to support all tests and

experimental setups of this system. Also a proper communication mechanism

needs to be laid out which is capable of supporting such communication at the

required fidelity. And finally a mapping system needs to be created to allow the

controller to control the synthesis system effectively. Thus, we can logically

separate the approach into three subsystems. Each dealing with its own domain,

and yet coming together as one to form the whole synthesis control system. The

approaches to individual systems are defined in the following sections.

2.2.1 Interactive Data-Acquisition Subsystem

An interactive gestural data-acquisition system is the front end of a synthesis

control system. Otherwise called ‘the controller’, this would consist of sensors

and some type of processing hardware, and some feedback devices. It would then

be able to connect with the communication subsystem and deliver the acquired

control data to the synthesis system.

Complex gestural data-acquisition systems can be considered in this approach.

These wouldn’t be much different, except for the types of sensors needed, and the

amount of processing required. For feedback on such controllers, haptic devices

could be explored as an option.

12

While, large, powerful and expensive data-acquisition systems are widely

available, such systems are limited in their usages because of their size, power

requirements and costs. Thus, a low-cost, simple microcontroller based system

might serve as a useful and practical data-acquisition system, especially in the

case of this project. Furthermore, with the focus of new technology towards

embedded devices, such a system can be extendible for the future addition for

newer technologies.

2.2.2 Communications Subsystem

The acquired data has to be passed on the data to the synthesis system. This

requires an efficient and practical communications system. Such a communication

system should be able to transmit data in different forms, over various mediums,

with high logical and temporal fidelity, for a generic solution for the problem.

Templar fidelity of the system is necessary to allow a real-time control of the

synthesis. Since an embedded microcontroller based solution is being considered

for the data-acquisition systems, the communication system should also be able to

support such a system.

Keeping the rapidly changing communication technologies in mind, the

communication system for such an application has to be extendible for future

usage, and independent of medium, thus able to work in multiple scenarios,

including over mediums which might not yet exist. Such a generic system allows

13

this solution to work in many different application environments, across many

different platforms.

2.2.3 Mapping Subsystem

The final and the most important part of the control system is the mapping

subsystem. The control inputs extracted from the data-acquisition system might

not necessarily correspond to the synthesis parameters. The control inputs need to

be adjusted for range, number, and type (discrete or continuous) to match the

synthesis parameters. They may also need to be having various functional

relationships with synthesis parameters. For example, the ‘volume’ synthesis

parameter has to change over an inverse square relationship with respect to a

‘distance’ control input. It is also possible in many cases that the exact nature of

such a mapping in not known and might need to be dynamic, changing with

respect to time, or non-deterministic, random in nature. Finally, there can be

multiple control inputs that affect a single synthesis parameter and vice versa.

To be able to achieve all such types of adjustments and processing that have to be

done to the control input, a mapping scheme is the effective solution. A generic

mapping scheme can be conceptualised as a functional relationship between the

controls input vector and synthesis parameter vector. In 2-dimensions, the

functional relationship can be visualised as a plane containing functions and the

control inputs are adjusted using those functions depending their positioning on

the plane. The following figure, Figure 2, illustrates the idea

14

Figure 2: 2-D Conceptual representation of mapping.

The control parameter’s position on the 2-D plane is defined by their values. They

are mapped to synthesis parameter on another 2-D plane. This is of course a

simplification for visualisation purposes. Actually mappings may be more

complex and have dimensional asymmetry, where the synthesis and control

parameters have different dimensions.

Thus, a mapping scheme, which is able to effectively map various types of control

input to a given synthesis engine, would form the mapping subsystem. If designed

and developed well such a system could yield a control system able to make the

synthesis system produce a variety of sounds, in the most effective and user-

friendly way.

2.3 Modularisation of Control Subsystems

An important aspect of the approach taken in this project is the modularisation of

control system. The system is designed to be modular, such that, any of the

Synthesis System

Control parameters

Mapping

Adjusting Functions

15

modules or subsystems is able to work independently. The above mentioned three

subsystems can be used in other applications, and thus should not be restricted to

this specific application. A modular design allows for such development. Figure 3

illustrates the envisioned modularised control system.

Figure 3: Envisioned modularised control system.

However, it should be designed so as not create too many interface layers; as such

it would slow down the control process itself. Thus would be detrimental to the

real-time aspect of the control system.

2.4 Control Tool Chain and Synthesis

S/W# Controller

H/W+ Controller

Synthesis

System

H/W+ Controller

Mapping

Mapping Comms*

*Communication System
+Hardware
#Software

Comms*

Comms
*

Comms*

Remote/Distributed Elements Elements based on a single platform

16

The problem of control of physical synthesis systems is approached by defining

the three important modules, which it should contain. And looking at each

individual module, its requirements and functionalities, leading to a chain of tools

corresponding to each module to implement the needed functionalities and fulfil

the requirements.

17

 CHAPTER 3

Literature Review

3.1 Overview

This chapter looks at the current state-of-art and written literature for each of the

three subsystems defined in the previous chapter. Using this knowledge, a design

can be discussed for the implementation each of the subsystems.

3.2 Interactive Data-Acquisition

There exist a number of platforms for developing sensor-based data-acquisition

systems. These come in a variety of styles and configurations. Most are essentially

DACs, which convert analog sensor voltages into digital signals and encode them

according to a communication protocol, and transmit the digital signals over a

hardware interface. Accompanied by signal conditioned sensors, data-acquisition

systems offer a straightforward way to do gestural control over digital synthesis

without any programming and minimal knowledge of electronics.

Jensenius [9] presents an extremely low-cost alternative following the same

paradigm of a data-acquisition system by using inexpensive, discarded game-

controllers which use the USB Human Interface Device (HID) protocol. They rely

on readily available HID drivers to interface with music software applications.

Another low-cost microcontroller-based USB data-acquisition system is described

in the SensorWiki [10].

Currently available data-acquisition systems for sound synthesis control include

the I-CubeX [11], Kroonde, Toaster [12], Eobody [13], EtherSense [14], Teabox

18

[15] and WiSe Box [16]. Several features of these systems are compared in Table

1.

Table 1: Comparison of selected sound control Data-Acquisition system

System iCubeX Kroonde Toaster Teleo

Physical

Connection

(s)

MIDI,

Bluetooth
Ethernet, MIDI Ethernet, MIDI USB

Data

Protocol
MIDI

OSC(UDP),FUDI,
MIDI

OSC(UDP),FUDI,
MIDI

Proprietary

Max.

Sample

Rate (Hz)

250 200 200 100

Max. A/D

Resolution

(bits)

12 10 16 10

No. of

Analogue

Channels

32 16 16 Extendible.

Cost (USD)
$400 $1450 $1450 $189

System Eobody EtherSense Teabox WiSe Box

Physical

Connectio

n(s)

MIDI Ethernet SPDIF 802.11b

Data

Protocol
MIDI OSC(UDP)

Proprietary
OSC(UDP)

Max.

Sample

Rate (Hz)

900 1000 4000 200

Max. A/D

Resolution

(bits)

10 16 12 16

No. of

Analogue

Channels

16 32 8 16

Cost

(USD)

$575 $1200 $395 $1150

19

More flexible modular systems, such as Teleo [17], also offer analog-to-digital

modules, in addition to things like generic digital I/O, pulse-width modulation,

and motor controllers. These can provide a wider variety of modalities of

interactivity, but require more technical knowledge on the part of the user. The

hardware on these devices is not directly programmable, but they require some

amount of programming on the PC to which they interface in order to operate.

Simpler systems, such as the AVR microcontroller system presented in [18] are

not specifically interactive gestural data-acquisition systems, but rather powerful,

general-purpose toolsets that can be used in a variety of embedded applications

including synthesis control. They require programming, as well as some basic

knowledge of circuits and electronics. Such systems have also been demonstrated

to produce novel, powerful interactive projects by relatively inexperienced

designers in short amounts of time [18, 19]. Costs saving of this type of systems

can also be an important factor for academic institutions and individual

developers, and especially for this project.

3.3 Communications

MIDI is currently the most commonly used communication protocol for control of

sound synthesis. The MIDI standard consists of a communications messaging

protocol designed for use with musical instruments, as well as a physical interface

standard. Physically it consists of a simplex digital loop serial communications

electrical connection which runs as 31,250 baud [20].

20

The MIDI message format consists of 1 to 3 bytes of data, corresponding to an

instruction to a synthesiser. However, the number of different instructions and the

number of different channels that can be communicated upon is limited to 16. In

the context of our synthesis system, each channel would intuitively correspond to

a specific Sound Model and thus, there is a limitation on the concurrent number of

models that can be used. Furthermore, the data arguments of the messages are

restricted to single byte, and cause a reduction of resolution. Thus, MIDI

communication standards are limited in many aspects. However, MIDI is widely

supported and libraries and APIs for MIDI message generating software can be

found easily for various platforms including embedded microcontroller based

platforms [18].

A newer communication protocol, OpenSound Control (OSC) is an alternative for

such communications [21, 22]. OSC is an open, transport-layer-independent,

message-based protocol developed for communication among computers, sound

synthesizers, and other multimedia devices. The protocol does not define a

transport layer or any layer lower than the transport layer as in the OSI model

[23], to be used. And thus the protocol can be used over any of common

communication transport layers like TCP or UDP and various data-link layers like

Ethernet or WiFi [24]. This implies that there is no restriction on the speed of the

communication in the OSC protocol itself, unlike MIDI. The speed is determined

by the physical layer being used in the specific application.

21

OSC Message format is extendible and not limited like MIDI. It follows URL

type tree based addressing scheme and supports many data types of arguments.

Furthermore, multiple arguments are supported for every message, and wild cards

messages are defined for sending multiple messages efficiently. A query system

has also been proposed for OSC [25], though it has not been standardised yet.

Such the query system would allow the communication system to support

advanced features like two way communication, which could support feedback in

the controllers, as well as intelligent features like automatic exploration and auto-

configuration of the other subsystems.

Implementations of OSC in different languages for various platforms exist. These

include JavaOSC in Java [27], flosc in flash [28] OSClib for C [29] and OSC

library for Max/MSP [30]. Among these implementations, the Java

implementation of OSC would be more relevant for this project since the

synthesis system itself is built in Java, thus creating the communication interface

to the synthesis system would be easier in Java.

JavaOsc is the first implementation of OSC protocol in Java. It supports the

creation of OSC messages and bundles, and their transmission and reception over

UDP connection. Received messages are extracted and dispatched to their

respective OSC Message Handlers. The implementation provides the various data

types used in OSC Communications and provides the API for software

applications using JavaOSC. Message dispatching is implemented through call

back methods using Java Interfaces.

22

3.4 Mapping

Approaches to control in the form of mapping have existed in fields such as

control systems [31] for some time. Only since the relatively recent advent of

practical, interactive real-time digital synthesis has it become applicable to sound

synthesis.

Over the years, many strategies have been proposed to approach mapping. A

popular mapping strategy is to define formal deterministic relationships between

control and synthesis parameters. These strategies are mainly based on techniques

predominant in control theory, like linear algebra and matrix transformations [32].

Such techniques tend to be ineffective for control of sound synthesis as they lack

the dynamics which are important for synthesis, or tend to be too complex to be

used in such an application.

Some authors choose to take non-linear and heuristic-driven approaches that lead

to practical and interesting mapping strategies. These include using spatial layout

of mapping or weighing functions over a representation of the input space [33]

and the uses of geometric shapes to define input parameter spaces and mapping

such shapes to shapes of higher dimensionality [34].

Some of these systems introduce one or more intermediate or "middle" mapping

layers between control and synthesis parameters. In such schemes, control

parameters are mapped onto intermediate parameters, which are in turn mapped to

23

synthesis parameters. These intermediate parameters may be arbitrarily-defined,

may describe some higher-level, perceptual, features of the desired sound [35, 36],

or may represent some virtual system whose features are mapped onto the

synthesis parameters. For example, Schatter et al. [37] use a gestural controller to

manipulate virtual graphics objects, whose features are mapped to synthesis

controls.

Multiple layered mapping can allow the intermediate mappings to be reused. The

mapping from the middle layer to the synthesis parameters may remain

unchanged, while another controller is mapped to the middle layer [38]. Multi-

layered systems are also one way of dealing with the problem of dimensional

asymmetry. Dimensional asymmetry occurs when the dimension of the input

control parameters and the output synthesis parameters is not equal. As such,

mapping can be considered as a dimension reduction problem, and certain

dimension reduction schemes, like simplical interpolation [39], can be used as a

mapping strategy.

Figure 4: A Multi-layered Mapping Scheme

Controller

Pre-Mapping

Mapping (Morphing)

Post-Mapping

Synthesis System

24

Though an m-input n-output configurable mapping technique is very generic and

widely useful, a mapping technique with restricted input dimension is worthy of

consideration. Furthermore, in most applications, fewer dimensional input spaces

are sufficient to provide the required control over the synthesis.

Such low input dimension mapping techniques allow users to comprehend and

explore the mappings in much greater extent. These techniques are also more

intuitive and thus can lead to more expressive mappings. One example of this is a

mapping strategy proposed by Bencina [40]. In the strategy the inputs are

restricted to a 2-dimensional space. However no restriction is placed on the

number dimensions of the output.

3.5 Review

There is a lot of work that has been done in the areas spanned by this project.

Some of these works provide interesting insights on various theories relevant to

sound synthesis and its control. Others give interesting ideas and directions for

development of various techniques.

The knowledge and understanding gained from the review of all these works are

can be used in the development of the system to tackle the problem of effective of

digital sound synthesis.

25

 CHAPTER 4

Data-Acquisition System

4.1 Overview

This chapter discusses the design and development process of the data-acquisition

system. Initially, the idea of a microcontroller based data-acquisition system is

discussed. Then the design of such a system based on a hardware platform is

discussed with other hardware and software consideration to implementation of an

easy to use data-acquisition system.

4.2 Microcontroller based Data-Acquisition System

The mobility, low power and low memory requirements, low cost and ease of

interface with sensors and other devices makes microcontroller a viable solution

for data-acquisition for control of synthesis.

The idea is to have a microcontroller based controller with a number of

improvements for sound synthesis control and a toolset to go along with the

controller. This system has the benefit of low-cost, ease of programming and

flexibility. While it does require programming, a simple API can be provided for

the user, which may be combined with existing software libraries to greatly

simplify the task. For communicating the acquired data the use of Ethernet

communication would ensure compatibility with a variety of existing or custom

software applications on many operating systems.

4.3 Hardware

26

The main hardware components of this system are a microcontroller and a

network interface chip (NIC) for Ethernet communication. Ethernet is the most

simple and easily available form of data-link layer which can support the required

communication. These can reside on a single, inexpensive, commercially

available development board, like EDTP Easy Ethernet AVR [41]. In the

following discussion of the hardware and software of such platforms, the many

features of this system that give users the ability to develop new interactive

devices related to data-acquisition systems are highlighted.

4.3.1 Microcontroller

The Atmel AVR microcontroller family is an 8bit RISC processor with a well-

defined I/O structure. The maximum clock speed of this family is now 24MHz on

some devices, offering 24 MIPS. The AVR series feature Harvard architecture,

with separate self-programmable Flash program memory and SRAM sections.

The microcontrollers come with embedded Analogue-to-Digital converters

(ADCs) and other communication protocols like I2C and SPI [41].

The AVR series [41] includes many devices with different capabilities. An open-

source gcc compiler and C libraries offer mostly transparent code portability

between devices, and make development of software easy. Hardware development

platforms also offer smooth transitions between devices within the family, in the

need of extending the capabilities by using a microcontroller with larger memory

or more features.

27

Development boards, such as Procyon Engineering’s AVRMini [42] are available

for prototyping, and testing AVR microcontroller. The AVRMini is a complete

development board with convenient pin headers and sockets to access

microcontroller’s I/O ports, pin-protecting resistor packs, LEDs and pushbuttons.

The AVRMini can also be interfaced with an LCD display with the onboard LCD

controller. This can be useful for interactive applications for the controller.

4.3.2 Ethernet Controller

The AVR microcontrollers need an Ethernet controller to communicate using

TCP/IP or UDP/IP. The core of the Ethernet controller consists of a NIC. The NIC

can connect to the AVR via its extended SRAM interface or using general I/O

pins. Several convenient packages allow for a NIC to be easily interfaced to an

AVR.

The EDTP Easy Ethernet AVR [43], a development board which includes an

AVR microcontroller, Realtek RTL8019AS NIC [44], R3-232 chip and RJ45

network cable connector is a viable solution. The RTL8019AS supports full-

duplex communication and the 10BaseT Ethernet standard. It interfaces to the

AVR using one of its 8-bit ports for data as well as another 9 pins for addressing

and control. Other NIC based development boards are also widely available life

the, the EDTP NICholas [43] which uses the 10/100BaseT ASIX AX88796L NIC

[44], providing greater speed.

4.4 Software

28

AVR microcontrollers are supported by excellent development tools and software

libraries. These are supplemented by simple libraries for building applications that

include sending and receiving OSC messages over Ethernet. This will be

discussed in details in the section 5.4.

4.4.1 Development Tools

AVR devices can be programmed in C, using a specialized open-source gcc

compiler. The avr-gcc compiler is supported by an array of software tools,

including an AVR version of the standard C library, the GNU debugger and

simulators. Both open-source and propriety development environments exist for

Windows, Macintosh and Linux [45, 46, 47].

4.4.2 AVRLib

The Procyon AVRLib is a thorough and well-documented GPL-licensed library

providing high-level access to basic AVR functions like timing and ADC, as well

as methods for interfacing with external devices such as LCDs, GPS, hard drives,

mp3 chips and accelerometers [41].

4.4.3 Ethernet drivers

Well written drivers are also available for most of the NICs. Mostly written in C,

these can be configured and cross-complied using avr-gcc to run on the target

microcontrollers.

4.5 Microcontroller based interactive data-acquisition

29

Thus a simple microcontroller based interactive data-acquisition system can be

developed with easily available hardware, tool-chain and a small amount of

programming. A variety of sensors can be attached to this system for the intended

application, and the system can be programmed to do the required processing on

the data before passing it to the synthesis system over Ethernet.

This system allows for a simple, low cost, easy to build, and easy to program

solution for data-acquisition. Such a solution is versatile as well as robust for

many different types of application in sound synthesis control. Further more it

allows for a great control over the acquisition and processing of data.

30

 CHAPTER 5

Communication Subsystem

5.1 Overview

This chapter discusses the design and development process of the Communication

system. Firstly, the use of OSC as the communication protocol is discussed. Then

the design and the development of the Java OSC Extension implementation of

OSC are examined. And finally, an overview of the OSC communication system

on the AVR-Mini based data-acquisition systems is done.

5.2 OSC Communication System

OSC is the most appropriate communication system for the type of control

applications required. It is extendible and medium-independent. Most of the

implementation of OSC in various languages and on various platforms is

complete and easily implementable.

The JavaOsc implementation, however, has a few limitations. JavaOsc [27] is a

based on a single thread and thus risks the loss of messages in certain conditions.

Furthermore, it uses linear searching algorithms for parsing. These searches are

slow and tend to reduce the speed at which a message can be dispatched.

Moreover, the package as a whole is somewhat difficult to use and lacks a clear

and intuitive interface. Finally, a lack of documentation for the API requires

examining source code in order to understand how to use it.

31

Since target synthesis of this project is in Java, the Java implementation of the

communication system needs to be complete and practical. Thus, an extension to

JavaOsc is designed and developed.

5.3 Java OSC Extension(JOE)

5.3.1 Design of JOE

JOE is an attempt to build upon the design of JavaOsc and improve in the areas it

lacks. JOE is based on an OSC Server design as defined in the OSC

specifications. This OSC Server is responsible for extracting, parsing and

dispatching any OSC Messages that it reads from a UDP socket. Any application,

such as a synthesis engine, requiring the use of the OSC server, instantiates the

OSCServer class and listen for the OSC Address Patterns that they are interested

in. Once an OSC Packet is received, the server extracts the contents, parses the

OSC Address and dispatches the message to the application if it has registered to

be listening for such an address.

Thus, the OSC Sever consists of three major sections; a) the receiver and

extractor, b) the parser and c) the dispatcher (see Figure 5). The three functions

are mutually independent and can be separated into individual threads of

execution.

Sending of OSC Messages does not require a server and can be done directly by

the application at any given moment. This functionality is left unchanged from the

original JavaOsc implementation.

32

Figure 5: Multi-threaded structure of the OSCServer.

5.3.1.1 Message Handling

The original JavaOsc is based on a single thread. The fetching and parsing, as well

as the dispatching are all done in the same thread. This can lead to incoming OSC

Messages being missed, since the server does not have a chance to receive the

next message until the current message is completely dispatched. If a certain

synthesis engine has a dispatch callback method that takes a long time to execute,

then by the time the thread returns to allow the server to retrieve the next message

from the buffer, it may have been already overwritten by yet another following

message.

To overcome this problem, JOE is made multithreaded. It has separate threads to

receive new OSC Messages, and to parse the incoming message. The threads are

linked through a queue that transmits OSC Message data structures to the parsing

thread. This reduces the amount of time a message needs to wait before it is

fetched, and thus the likelihood that it will be overwritten by another incoming

message.

Thread 1

Receiving
&

Extracting

Thread 2

Parsing
&

Dispatching

Thread 3

Late

Dispatching

Message Queue Dispatch Queue

33

Incoming message bundles can be time-stamped (described later in more detail).

If an OSC Bundle is received which is time-stamped to be dispatched in the

future, the messages in the bundle are queued into a synchronized priority queue.

In this queue, the priority is defined by the dispatch time. The OSC Message with

the earliest dispatch time has the greatest priority. This queue links to another

thread, which waits and dispatches the messages on time. In the case of an OSC

Bundle that arrives later than its stipulated dispatch time, the synthesis engine can

configure the server to either dispatch it immediately or discard it.

5.3.1.2 Argument Handling

JOE supports all the Atomic Data Types defined in the OSC specification. It also

supports other commonly used argument types like 64-bit Integer, 4 byte

character, TRUE/FALSE, and 64-bit Double. Type tag strings are enforced and

messages without type tags are discarded. This is necessary since in such a

generic implementation of OSC, it is impossible to predict the type of an

argument.

Since the arguments are stored in Java Objects of the various types, they are

dispatched as a Java Object array. JOE provides helper methods in the abstract

listener class to discover and retrieve the type of the arguments passed on to the

synthesis engine.

5.3.1.3 Parsing

34

The original JavaOsc implementation uses a heap data structure to store the OSC

Address Space – simple list of all of the addresses the application handles. The

elements of the heap are then individually read and compared to the incoming

OSC Message's OSC Address Pattern. This linear storage and comparison is

inefficient in terms of the amount of comparisons needed to reach the desired

element. JOE addresses this limitation with a better data structure used to store the

parsing strings.

Furthermore, JavaOsc implements strict string matching using the isEqual()

method on strings treating OSC wildcards as string literals. This means that the

use of wildcards is not supported by the server so that the synthesis engine has to

handle them.

5.3.1.3.1 Tree Based Storage Structure.

JOE uses tree type data-structures to store the addresses spanning the OSC

Address Space. OSC Addresses have similar syntax to URLs and thus span a tree-

like address space. Implementation of such a space using a tree data-structure is

not only intuitive, but also efficient. A Multi-Way tree, a generic N-nary tree, is

used in JOE to keep track of the Address Space (See Figure 6). Such

implementation reduces the number of comparisons needed to reach the element

of interest.

35

Figure 6: Multi-way Tree Structure.

Since multiple addresses might match an incoming message, the unordered list of

addresses used in JavaOsc also means that the whole list must be traversed for

matches to each incoming message. In JOE, the ordered insertions of new

addresses allow further improvement on traversal complexity, since lexicological

comparisons allow searches to complete without traversing the entire tree.

Although these increases the time necessary for insertions, insertions are typically

done prior to real-time operation, and when they are not, they are still generally

far less frequent than search traversals, so that this strategy yields a better overall

performance.

5.3.1.3.2 Intelligent OSC Parsing

JOE parses the OSC Address Patterns of incoming OSC Messages intelligently.

OSC Address Patterns can contain wildcards as defined by the OSC

Specifications. Such wildcards can match to multiple addresses. JOE uses regular

expressions to match the OSC Address Patterns to nodes in the address space.

/root

/child1 /child2 /child3

/grandchild1-1 /grandchild2-1

/ggrandchild2-2-1

 : Linked List

 : Child

/grandchild2-2

36

However, since the syntax for wildcards in OSC and regular expressions is

different, JOE converts the OSC wildcards into the equivalent regular expressions

wildcards. This allows for simple and elegant matching algorithms.

JOE also handles brackets in OSC Address Patterns. Brackets are opened up by

the parser and converted into individual strings without the brackets. They are

then parsed individually. Address patterns with incomplete or incoherent brackets

are discarded.

Implementation of wildcards and brackets allows for the creator of the address

space to be abstracted from the knowledge of the OSC Address format and

especially the significance of wildcards. Wildcards permits the controller to send

fewer messages and yet attain the same effect.

5.3.1.4 Blobs

An OSC Blob is a data type used to support a generic array of binary data. It is

one of the Atomic Data Types defined in the OSC specification. Blobs, however,

are not supported by JavaOsc.

Blobs are useful to applications that need to implement unsupported data types

and extend the capabilities of OSC. The OSC Blob is implemented in JOE as a

Java class. It is also supported as an argument to the OSC message and

appropriately extracted out to the argument array.

37

5.3.1.5 Time Tags and Dispatching

OSC uses OSC Time Tags to define when a certain message gets dispatched.

JavaOsc does not handle time tags by itself. Time tags are extracted and handed

over to the synthesis engine to be dealt with. Some real-time synthesis engines

may not be capable of handling time-stamped events, and furthermore, if a

message is sent to multiple synthesis engines, then the dispatching effort must be

duplicated in each of them.

JOE handles time tags on the server. Messages tagged to be dispatched at future

times are held in a queue and dispatched at a later time from within JOE itself.

Synthesizers can optionally request that future events be sent immediately when

JOE receives them.

5.3.1.5.1 OSC Time Tags

Time Tags are only attached to OSC Bundles. The time tags are based on the NTP

Timestamp protocol [49] and represent a range of 136 years with a resolution of

236 picoseconds. Using time tags, a controller can attain fine grain temporal

control over the synthesis engine, even if the delivery mechanism does not

guarantee temporal accuracy.

Nested bundles cannot have time tags indicating earlier dispatch time than the

parent bundle. In JOE, such messages are considered erroneous and discarded. In

some cases it might be necessary to ignore Time Tags. This configuration option

on the server is available to the user.

38

5.3.1.5.2 Java Date Object and Accuracy

In JavaOsc, Time Tags are internally represented by a Java Date object which

uses a millisecond resolution. This allows the easy implementation of time tag

comparison while dispatching. The drawback of the conversion is the loss of

accuracy compared to the NTP timestamps.

In most synthesis environments, however, accuracy of events of up to a

millisecond is adequate. Furthermore, since these time tags are compared with a

reference clock, the clock itself has to provide time with as much accuracy as the

time tag. Java’s system time clock relies on the operating system for time keeping.

Generally, operating systems do not generally provide clocks with greater than

millisecond accuracy making the NTP picoseconds information irrelevant.

5.3.1.5.3 Synchronization of Clocks

For the effective use of time tags, the clocks across the participating platforms

involved have to be synchronized. This question does not arise when the control

application and the synthesis engine are on the same physical machine.

Protocols like NTP allow accurate synchronization of system clock to the internet

time servers. Most of the modern operating systems have the feature of allowing

such synchronization. However, NTP synchronization can be hampered by

network transport layer delays and thus can only provide accuracy of about

300ms.

39

These problems can be avoided by sending OSC Messages well in advanced such

that they will reach the OSC Server well before they have to be dispatched.

5.3.1.5.4 Late Dispatching

Late dispatching of messages is required when a parsed message is found to have

a time tag with a future dispatch time. Such messages are stored in a priority

queue and dispatched when their time comes. The dispatching is done by the late

dispatch thread. The thread checks the highest priority element in the queue at a

frequency of one millisecond, and waits for its dispatch time to arrive before

dispatching it to the application.

5.3.1.6 Listeners and Interfaces

The OSC Server communicates with the synthesis engine through listeners.

Listeners are a standard Java feature used to implement callback methods. JOE

uses the same type of listeners as JavaOsc, the OSCListner interface.

When the synthesis application wants to receive a certain OSC Message, it

registers a listener with the OSC Server. This listener will be activated by the

OSC Server when that specific message arrives.

The OSC Server allows dynamic registration and de-registration of listeners. It

also supports multiple listeners for an individual address. This allows the same

40

OSC message to be dispatched to different parts of the same synthesis engine, or

even different synthesis engines.

Listeners are easily implemented using Java Interfaces. JOE uses the OSCListner

interface defined in JavaOsc. This backward compatibility allows most

applications using JavaOsc to switch to JOE with minimal change.

5.4 OSC on AVR-Mini

Since the AVR-Mini based data-acquisition platform supports C language

programming, the OSC library for C [29] can ported to that platform without

much efforts. However, for an easy to use application of the data-acquisition

systems, an API is developed.

This API provides a simple interface for building an application that sends and

receives OSC messages in UDP packets over Ethernet from an AVR

microcontroller. This can be combined with powerful AVRLib functions to create

a device able to generate and send OSC messages based on sensor inputs or other

processes. It is based on uIP-AVR v0.90 and the reference OSC library [29]. uIP-

AVR is a port of uIP, an open-source TCP/IP stack designed to provide

connectivity to embedded 8-bit microcontrollers. It supports many of the basic

Internet communication protocols like TCP, UDP, ICMP, and ARP.

5.4.1 MOE API

41

The Microcontroller OSC Ethernet (MOE) API provides an interface to shield the

details of the uIP stack, NIC drivers and network protocols from the user. A single

header file contains flags and configuration options including the port addresses

used to interface to the NIC, maximum number of connections, local and remote

IP addresses and UDP port numbers. It is configured by default to work with the

Easy Ethernet AVR board.

The user has to implement two functions, and is given guarantees of their

execution time and order. The app_init() can be used to initialize the application

internal and external components. The app_main() function is called in a tight

loop by the uIP stack, as fast as the execution speed permits. Library functions

allow the user to check if OSC messages were received, and to bundle and send

OSC messages. The following 8-line example program is an 8-channel data-

acquisition system sending 10-bit ADC values as OSC in UDP packets.

Figure 7: A simple microcontroller program.

5.4.2 API and Library

OSCbuf osc_buf; // OSC buffer
char type[] = ",ii"; // OSC type string
char msg[] = "/sensor"; // OSC address

for (i=0; i<8; i++) {
OSC_writeAddrAndTypes(&osc_buf,msg,type);

OSC_writeIntArg(&osc_buf,i);
OSC_writeIntArg(&osc_buf,a2dconvert10bit(i));
sendOSCBuf(&osc_buf);

42

The choice of an API implementation for the embedded OSC software provides

some constraints over the types of applications that the user can develop.

Compared to a straight API-less function library, there are limitations imposed by

the structure of the program. Other complex network tasks such as DHCP for IP

address acquisition or serving web pages via HTTP are entirely possible with this

hardware and software, but are excluded from the MOE API. This is chosen to

limit the networking paradigm for the sake of simplicity, but leave the full power

of the microcontroller’s memory, timing, ADC, hardware and peripheral

interfaces available for complex sensing and feedback tasks. A library

implementation would make advanced network tasks available alongside these,

but would require the user to understand and construct a complete network stack

from scratch or modify an existing one.

5.4.3 Capabilities of MOE API

The benefits of a simple API implementation justify the constrained functionality.

A software library alone would render the system simply unusable for many users.

The Microcontroller OSC Ethernet (MOE) API provides a robust interface with a

fast learning curve that limits the possibility of errors. The user does not require

any detailed knowledge of the inner workings of the network stack in order to use

the API. These components are available for inspection, but do not require

modification. Since the MOE API is built on top of open-source software

libraries, the underlying system code and libraries are always present for advanced

users in order to build their own customized network systems.

43

In addition to the powerful microcontroller features it makes available, the MOE

API also still offers more options than are available on many other data-

acquisition systems, in spite of its constraint. It includes support for multiple UDP

connections with different hosts or different ports on the same host. The OSC

addresses and message formats are customizable, and it can send OSC bundles

with timetags. Support for multiple incoming connections is also available.

Parsing of incoming OSC messages is presently not provided, but can be made

available. One caveat of receiving OSC is that string operations can significantly

slow down processing time; however, using short messages and simple OSC

address spaces the delay can be avoided and ‘real-time’ness ensured.

There is significant overlap between the functionalities of uIP-AVR and MOE.

For the sake of creating a simpler API some parts of uIP-AVR were either

removed were extracted as configurable options at compile time. TCP support is

one such example. Most OSC-capable PC applications only support UDP as the

data-link layer protocol [23]. This is because it requires less overhead and users

are willing to accept the risk of packet loss for the sake of faster, unverified

delivery. TCP functions are available in MOE and may be included by setting a

configuration flag. Excluding TCP support saves a significant amount of code

space for the user’s application.

5.5 OSC Communications

44

OSC can be used as a communication system for such control purposes. OSC can

be implemented on various platforms, in various languages with different foot

print sizes. And yet, it allows great control over the communication of the control

and feedback data over all its implementations.

45

 CHAPTER 6

Java Mapping Tool

6.1 Overview

This chapter looks at the mapping subsystem. First it looks at how mappings can

be evaluated. Next, a novel mapping technique is discussed. Finally, the

implementation and a tool created to generate such mappings are discussed.

6.2 Creating and using Mappings

An important separation exists between, making and using the maps, which needs

to be addressed. The tool being developed should allow the creation, audition as

well as the use of the maps or ‘mappings’. The map has to be created, by a user, or

‘the creator’. It can be auditioned while being created. The map can then be used

by the same user or by someone else, ‘a user’.

6.3 Mapping as transformations

Through out the literature about mapping, a basic idea can be seen repeatedly,

described in various ways. Mapping is the transformation of data from one

domain to another. The way this transformation is done is dependent on the

mapping scheme being used. However, there are three important aspects the

transformation which can be extracted as being important in for this project.

Mapping is the transformation from control parameters to synthesis parameters.

Mapping is the transformation form a low dimensional control space to a high

dimensional control space. And finally, mapping is a transformation from a

Perceptual Sound Space to a Parameter Space. The model in figure 8 exemplifies

these three concepts.

46

The Sound Space is the perceptual sound space as a human user envisions the

synthesis system exposing. This is the space of all sounds which the user’s idea of

the synthesis system can produce, and their relation with each other.

The Control Space a space of control signals or control data which the user should

have to input via the controller, either gestural or otherwise, to produce the types

of sounds he believes he can get. This should directly correlate with the perceptual

sound space, so that the user can easily control the synthesis.

The Parameter Space is the space exposed by the sounds models in the synthesis

engine for control. This space can be, and is generally different from the Control

Space and might not correlate, in dimensions, or data types. A mapping should

transform the control data from Control Space to the Parameter Space.

Figure 8: Conceptual Representation of Mapping

Low, Soft

Loud Bang

High Shriek

Warm Noise

(0,0

(2,2

(1,2

(1,1

 (34, 284, 28, 382)

 (237,23,100,42)

 (-100, 2)

 (235.28,

Sound

Space

Control
Mapping Parameter

47

6.4 Evaluating Mappings

Three important criteria can be defined for analyzing mappings: complexity,

expressivity, and intuitiveness. There is certainly a strong relationship between a

mapping technique and the degrees to which these properties are reflected in the

mappings that are generated. One could conceive of quantitative metrics for

assessing these, but this is beyond scope of this thesis. These can be left as

subjective assessments in order to create a vocabulary for discussing and

informing the design of mapping techniques.

The complexity, especially the computational complexity of mappings, is an

important factor when designing mapping for a real-time audio synthesis engine.

Complexity can be conceived as related to the number of computational or logical

steps required to generate a synthesis parameter from an input control change.

Expressivity refers to the ability of the user to generate a rich variety of sonic

output from the synthesizer, under deliberate control. Mappings resulting in

output that on one hand might “always sounds the same” or on the other hand feel

“random” or “uncontrollable” from the user's perspective are not expressive.

Intuitiveness in a mapping can be seen as related to the user's mental model of the

mapping [50]. If the user requires only a simple conception of how the mapping

works, then it can be considered intuitive. With an intuitive mapping, the

perceptual sound space conforms closely to the parameter space of the sound

model.

48

These three criteria are not always independent. Intuitive mappings are more

likely to be expressive since the user can more easily comprehend the system.

Excessively non-complex mappings are likely to be intuitive, since the user may

be able to have a complete mental model of exactly how the system works (a

“surrogate model”, in Young's [51] terms). However, these may not be expressive

at all. Take the following system for example: two knobs generating 0-5V control

signals which are independently mapped to frequency (20-20000Hz) and

amplitude (0-90dB) of a sine wave oscillator. This mapping is extremely intuitive,

which means to say, a novice user can comprehend it almost instantaneously and

very simple, but not likely to be very expressive, at least to a new user.

In spite of these apparent relations between the criteria, a number of similar

examples easily show that they are not deterministic, and therefore the criteria

must also be considered independently. For example, complex mappings may in

fact be quite intuitive. Imagine a hypothetical control system that extracts vectors

of 3-D position data over time, based on the position of a user's finger in space.

This position data is mapped to parameters of a speech synthesis system that

“speaks” based on the letters that are being drawn in the air. This requires an

extremely complex mapping, probably first mapping the position data to letters,

and then mapping these to a large number of synthesis parameters in order to

generate speech sounds. However, it is quite intuitive; all the user needs to do is

write in the air, and the mapping converts it to speech. And such a system is

capable of a broad range of expression. Obviously, the complexity of such a

49

system is beyond anyone's present capability (at least to produce human-sounding

speech).

Strategies involving linear algebra and matrix transformations [32] are generally

complex as well as unintuitive, form the user’s perspective. However, the

expressiveness of such mapping is undeniably exhaustive, as with such

transforms, one can describe any linear relationship between the input and output

space. However, such relationships are difficult for the user to conceive, and thus

even more difficult to manipulate and explore.

Multi-layered systems are often successful at making complex mappings more

intuitive. They can provide the user with a more useful conceptual model than

what a direct mapping to synthesis parameters may provide.

The goal in creating a successful mapping strategy is to achieve an optimal

combination of the three criteria. A good mapping strategy should be intuitive and

should produce expressive mappings, with the least amount of complexity

possible in the mapping, but no less. These criteria should not only guide the way

the mapping tool is designed from the user’s perspective, but also how it is

designed from the creator’s perspective.

6.5 Parameterized Morphing

Morphing is a process used widely in image processing. It is used in animations

and motion pictures to change from one image to another through a seamless

50

transition. This is generally achieved by interpolating between certain common

features in the initial and final images.

Audio morphing normally describes the generation of a transition between two

segments of recorded or synthesized audio. As in image morphing, it is normally

achieved by interpolating between sets of features that are determined after the

sound has been rendered, based on analysis of the audio signal in the time,

frequency, or perceptual domains. For example, Slaney [52] describes a technique

for morphing between sounds by interpolating between extracted spectral shapes

and pitch.

6.5.1 Morphing in Parameter Space

With parametric, real-time synthesis, one can appropriate the term morphing and

extend its application to interpolation in the domain of the synthesis parameters

themselves, since they are available at the time of sound generation [53]. If for a

particular synthesis model, sound A can be specified by a vector of parameters PA,

and sound B can be specified by a vector of parameters PB, then a morph between

A and B can be generated by interpolating between PA and PB. Of course, the

extent to which this creates a perceptual morph depends on the nature of the

model and on the interpolation functions.

6.5.2 Mapping by Parameterized Morphing

This concept of parameter-space morphing can be used in the context of mapping.

The basic mapping scheme follows. For any synthesis model, sets of parameters

51

are defined in advance, corresponding to particular desirable or interesting points

in the model's sound space. A pair of parameter sets can be chosen and set to be

the end points for the morph. The morphing control then chooses the extent to

which each of the parameter sets contribute to the output of the mapping. The

following figure shows a simplistic model of this concept.

Figure 9: Simple model of morphing

This is achieved by with the use of some interpolating function between each

common parameter in the parameter sets. The user can also set the parameters at

the end point dynamically, thus exploring the synthesis space.

This scheme leads to a 3-n mapping, where the mapping takes in the 2 discrete

control inputs, and a continuous control input, and yields any number of

continuous synthesis parameter outputs. The 2 discrete control inputs are used to

choose which parameter sets are to be the end points of the morph, by indexing

them from a list. The continuous input, a slider, then determines the extent of the

morph. (See Figure 9)

Sound Space

Sound A

Sound B

Slide

52

6.5.3 Interpolation

A simple linear interpolation scheme will reduce the mapping to a simple range

modification function and thus, limit the utility and expressivity of the mapping.

For example, while synthesizing the sound of a helicopter, if the desired control

parameter of the mapping is the distance of the listener from the helicopter, the

relationship between the input and the volume parameter of the model needs to

follow the inverse square law. If the interpolation is limited to simple linear

schemes, such common scenarios would not be addressable. Thus, a need for non-

linear interpolation schemes arises.

An interpolation scheme in morphing determines the output value of a certain

feature, or parameter in sound synthesis, according to the two values being

interpolated between. In the general case, the mathematical expression for the

interpolation would be.

BAO PsPsP
rrr

⋅+⋅−=)())(1(ηη (1)

Where)(xη is the non-linear weighting function for the input, AP
r

 & BP
r

 are the two

parameter sets to be morphed between, s is the normalised value of the slider and

OP
r

 the output of the morphing. The following figure shows a conceptual

representation of the parametric morphing concept.

53

Figure 10: Conceptual Representation of Mapping

6.6 Additional Features

With this morphing scheme as a basis, a series of extensions can be added in order

to design a usable mapping software system that attempts to satisfy the criteria of

complexity, intuitiveness and expressivity. The objective is to design a mapping

application that can operate with a variety of synthesis systems and controllers

(physical or virtual). However, the large numbers of available synthesis systems

and controllers present a challenge to design a single application that offers

universal connectivity.

Therefore, a general-purpose mapping application is defined, around which

different interfaces can be defined, both for incoming control signals and outgoing

synthesis parameters. The front-end interface can transform the control signals to

the appropriate internal representation of the mapping system; this is a pre-

mapping. Similarly, the back-end interface transforms the internal representation

•
•
•

Slider

P-Set A

P-Set B

P-Set 1

P-Set 2

P-Set 3

A

P-Set 4
B

P-Set 1

P-Set 4

Slider

Output
Interpolating Function

54

of the generated synthesis parameters into a protocol and format supported by the

receiving application. See Section 6.7.5 for further details of the implementation.

6.6.1 Partitioning and Maplets

An extension to the morphing scheme arose from the need to have more control

over the mapping. If all the parameters are considered to span an n-dimensional

space, then each parameter set of length m defines a (n-m) dimensional subspace

of the original n-dimensional space. Morphing between two such parameter sets,

the output defines a sequence of (n-m) dimensional spaces. Parameter sets allowed

the shrinking of the output parameters space dimension from n to (n-m), however,

the remaining (n-m) output parameters become uncontrollable. Furthermore, this

scheme cannot produce divergent mappings as defined by Rovan et al. [54].

To address both these limitations, concept of maplets is introduced. Maplets are

objects which contain the ability to do a single parameterized morph as discussed

in section 6.5.2 . A complete map can contain one or more maplets.

Maplets are based on the idea of partitioning the set of all output parameter into

groups of parameters that are related, especially in their dynamics with respect to

input parameters. For example, all parameter which change exponentially over a

certain input parameter can be grouped together. Such groups can be assigned to

individual maplets, thus, allowing each group to have its individual morphing

functionality and inputs. maplets serve as the atomic mapping entity.

55

Furthermore, maplets allow having multiple pairs of parameter sets to be morphed

over simultaneously. This is useful when controlling complex sound models with

multiple sets of parameters closely related in their behaviour. This feature is also

needed when different interpolation functions are needed to map different groups

of parameters. For example, when controlling a sound model of a car, it is

effective to control all the parameter related to the tyres separately from all the

parameters related to the engine.

Finally, multiple maplets allow a single mapping to control multiple unrelated

models using a single or multiple set of controls. Thus allowing single input to

single model mappings, as well as mappings where single input can control

multiple models. Such a scheme allows greater exploration of the sound space

exposed by the models, and still keeps the mapping intuitive. Divergent mappings

can also be generated by this scheme [54].

6.7 Implementation

A tool was developed to build mappings using the parameterized morphing

discussed above. The aim in the development of such a tool is to have a user

friendly and intuitive means for designing mappings, and to test the practicality

and verify the concept of the mapping scheme.

6.7.1 Java

Java was chosen as the development language for this project. Java has grown

significantly in scope and in popularity over recent years. Its mobility and

56

portability have been incentives for its use in the development of a wide variety of

applications for servers, PCs and mobile devices. The choice of using Java is

mainly influenced by the ease of creation of Graphical User Interface (GUI) in

Java and the available resources in Java for communication with other systems.

Furthermore, the Java Synthesis System is written in Java [6], thus a Java based

mapping tool can integrate easily with the synthesis system.

6.7.2 Modularity

Modularity is important in the design of the system, since many of the subsystems

are individual components that can be used on their own in a variety of mapping-

related applications. In order not to restrict further development of any of these

subsystems and the ability to work autonomously, under various situations, a

completely modular approach is taken in the development of this tool.

The core mapping functionalities are separated from the communication

subsystem and the GUI. The core mapping functionality contains the interpolating

and morphing logic of the mapping. It contains the maplets, the pre-defined

parameter sets and the interpolation functions. However, it has no user interface

and is only accessed through method calls. This helps to keep the core small and

computationally efficient. Furthermore, such a module can easily be embedded

into a synthesis system or models in a model based synthesis systems.

The communication subsystem is based on Java Interfaces, which are provided in

various places in the core to allow communication subsystem to be attached to the

57

core. The communication subsystem, often referred to as the I/O interface, can be

designed and implemented by the user according to the type of communication

required by the application. For example, if the tool needs to communicate with a

microcontroller based gesture acquisition system, which can output data as MIDI

messages, then the mapping needs a MIDI I/O interface that can identify MIDI

messages related to the inputs exposed by the mapping and call the required

methods.

Figure 11: Structure of the Mapping Tool

The GUI allows the user to use the tool interactively. It provides functionality to

test the mapping that are created and attach interfaces to the mappings. It also

gives the user a view of the current state of the system and the ability to store and

load maps dynamically. This is done using the serializable property of classes in

Java. As such, mappings can be interactively generated using the GUI and saved.

They can then be loaded into other systems, including systems on which having a

GUI is not possible.

Outputs Inputs

Core

Input

Interface

Output

Interface

GUI

Method
Calls

GUI
Interface

Output
Interfaces

Method
Calls

Method
Calls

Method
Calls

58

6.7.3 Sound Models

The tool uses the abstract concept of sound models for mapping sounds. Every

parameter being control by the tool needs to have some physical correspondence,

such that it can be controlled effectively. This is attained by forcing each

parameter to be a part of a sound model. Thus, sound models are logical

representations of physical sound models that are being controlled by the

mapping. They may or may not correspond to actual Sound Models (see section

1.4). Such models also allow modularisation of complex physical sound models as

they can be mapped to multiple sound models in the context of the tool, thus

making the partitioning of parameter sets simpler and straight forward.

6.7.4 Interfaces and OSC

The mapping core itself is designed to only communicate using method calls.

Thus, there is a need to allow various forms of interfaces in order to use the

mapping scheme in various applications, especially with plethora of synthesis

systems and controllers available to be supported. Since most of these systems

communicate with their own protocols, it seems reasonable to allow the user to

implement an interface and attach it to the mapping tool. Such interfaces form the

Pre-Mapping and Post-Mapping layers (See Figure 4).

In addition, an OSC based interface is developed as the default interface system

for the tool. OSC provides a simple, extensible and transport-layer-independent

protocol for communications [22]. Such a protocol is useful to support

59

communication with various other software and hardware platforms, including

synthesizers, microcontroller based data-acquisition modules and hardware

controller platforms. Furthermore, the availability of OSC libraries on many

platforms and in many languages, allows for easier development of interfaces on

the synthesiser [28, 29, 30]. JOE was used to create the Input Interface for the

mapping tool.

6.7.5 GUI

With intuitiveness and expressivity of mapping an important feature of this

scheme, a simple and easy to use GUI, is required. This GUI allows the user to

visualize the various elements of the mapping and also to interact with these

elements in real-time. Figure 12 shows screenshot of the main GUI screen.

6.7.5.1 Maplets List

The maplet list GUI gives the user a view of the currently active maplets in the

core. It shows which parameter sets are selected in each of the maplets. It also

shows the current value of the slider, using a slider graphical object. This

graphical representation of the maplet, tries to conform to the mental idea of a

maplet, thus making the mapping more intuitive to the user.

The maplet list GUI also allows the user to interact with the map. The user can

change the Slider and the Parameter Sets that are being used and hear the

difference real-time since the output is computed at every change of the GUI.

There is also additional functionality in the maplet lists to allow the user to

60

decouple the GUI from the core. This allows the user to change the GUI and yet

not affect core and vice-versa. This functionality can also prove useful as a trigger

utility, by pre-setting the sliders and parameter sets and then coupling the GUI and

the core.

Figure 12: GUI Main Screen.

6.7.5.2 Parameter Set Maker

Creating parameter sets is an important part of this mapping scheme. The GUI

allows the user to create parameter sets corresponding to particular desirable or

interesting points, interactively.

This ability to hear the synthesis output while designing the parameter sets of the

mapping improves the intuitiveness of the mapping scheme, since the user is able

Slider: Controls the extent of morph

for this maplet.

Parameter Set List: The List of all pre-defined parameter
sets

Interpolator List: The
List of various

interpolators available
for use in the morph.

Model List: The List of all sound

models being controlled

Interface Controls: Controls make and
edit OSC interfaces.

Parameter Set Choice: Allows
user to choose the Parameter
Set to be used for the morph.

Mapping Controls: This

controls to dynamically load,
save and edit mappings.

Maplet List: List of active
maplets

61

to create a mental model [50] with the help of the sound created by these

parameter sets.

6.7.5.3 Interface Maker

The interface maker allows the user to set up the input and output interfaces for

the mapping. Since the default interface uses OSC, this GUI element is

specifically implemented to setup an OSC interface. This interface also

implements a pre-mapping layer, which allows the input value of the slider to be

to be normalised so that natural range of the controllers can be accommodated.

This is achieved by forcing the user to set a minimum and maximum value of the

expected input. The value is normalised internally before being passed on to the

core. This ensures correctness of data being fed to the core.

6.8 Mapping

The mapping tool, called Java Mapper, developed during this project, implements

the mapping technique of parameterised mapping proposed by this project. The

technique yields a novel approach to mapping, which is intuitive, expressive and

yet not too complex. The tool allows the users to create and use the various types

of mappings generated. The various components of the tool are developed to

allow for easy creation and flexible usage of the mappings.

62

 CHAPTER 7

Evaluation

7.1 Overview

In this chapter the, implemented systems are evaluated based on their performance

under testing situations. Consequently, an application usage of the whole system

is discussed.

7.2 Performance

7.2.1 Data-Acquisition System

The performance of the data-acquisition system depends on the resolution of the

sensors, the frequency of sampling and the speed at which data can be processed.

The resolution of the sensors depends on the type of sensor and the ADC, if any is

used. The sampling frequency and the processing speed depend on the

microcontroller.

To test the performance of the data-acquisition system, a test application was built

using the Easy Ethernet AVR with an ATmega32 and MAX127 I2C ADC [55] to

do a single channel of ADC and send out the result as OSC over UDP. The

conversion result was encoded as an argument to a single OSC message. The

average incoming message rate measured over a period of several minutes was

over 1300Hz. While the raw ADC conversion speed of the internal ADC was 148

kHz.

Sampling rates such as these suffice the target usage of the system. Thus, the

microcontroller based data-acquisition system performed as expected while

63

running the OSC based communication protocol and using internal as well as

external ADCs.

7.2.2 JOE

Performance tests were done to compare the performance of JOE with JavaOsc,

since the aim was to improve the performance of JavaOsc. In these tests, a test

application was created to set up the OSC Server and register several dummy

listeners. These listeners simulated the processing time taken to handle a message

by waiting for a random amount of time and then printing out the integer

argument of the message received. On a different machine, OSC Messages were

sent out using pd [26]. Pure Data (pd) is a real-time graphical programming

environment for audio, video, and graphical processing known for solid timing

characteristics. Each message was given an integer argument according to its

sending order. This allowed us to check if all the messages arrived at receiver.

Using this setup, the ability of JOE and JavaOsc to handle a barrage of messages,

including those with wildcards triggering multiple dispatches, delivered at various

rates was tested.

JavaOsc fails to receive messages in certain cases. It was observed that when the

periodicity of incoming messages is greater than the time taken to dispatch a

message, packets are lost. Initially for a few packets there were no lost packets,

however, after some time (depending on the rates of sending and dispatching)

some packets failed to arrive.

64

Java Socket classes allow messages to be buffered internally. However, when

these buffers overflow, older messages are overwritten by new ones. Such

overflows are bound to happen when the processing time of messages is longer

than the rate at which they arrive. The large size of these buffers allows temporary

resolution of the problem, but prolonged usage will definitely lead to message

loss. On PC or Mac based platforms, the problem can often be addressed by

increasing the buffer size. However, on mobile platforms where memory is not

freely available, small buffer sizes could be an issue.

Using JOE, under no circumstances were any messages lost, even with wildcards

that triggered multiple dispatches. When Time Tags with “future” times were

used, JOE delivered messages to applications with the targeted millisecond

accuracy.

7.2.3 Java Mapper

The performance of the Java Mapper is a subjective concept, and dependent on

many external factors like the controller and synthesis systems. It might work well

with certain type of synthesis system and even specifically certain models. There

is no quantitative analysis that can be done to evaluate the performance of Java

Mapper. However, the mapping scheme can be evaluated, using the criteria

defined in Chapter 6.

7.2.3.1 Multi-Layered Mappings

65

The parameterized morphing based implementation represents a multi-layered

strategy, in that the notion of parameter sets represents an intermediate construct

between the input and output parameters. One feature of this, as Wanderley [7]

highlights, is that the mappings themselves, from parameter sets to synthesis

parameters, can persist regardless of the input parameters. Parameter sets can also

be reused in different maps and maplets. From the user's perspective, the concept

of parameter sets also simplifies the mental representation of a potentially large

space of synthesis parameters. Once parameter sets representing desirable points

in the synthesis space have been defined in an off-line process, the user can ignore

the target parameters themselves, and rather conceive of two sounds and a morph

between them, thus making the mapping intuitive.

7.2.3.2 Convergent and Divergent Mappings

Mappings can be classified as one-to-one, convergent and divergent [53]. A good

mapping scheme allows for all three types of mappings to be defined. The

parameterized morphing based mapping scheme, allows one-to-one, as well as

divergent mapping. However, it is unable to produce a convergent mapping. Such

a mapping does not fit easily into the morphing framework used in this mapping

scheme. If there is indeed a need for simple convergent mapping to be coupled

with this mapping scheme, they can easily added as the pre-mapping layer to this

mapping scheme.

7.3 Application

7.3.1 Microcontroller based Controller and a Mapping Server

66

To showcase the usability of the whole tool chain and as a proof of concept, an

application was setup to use all the parts of the control system. A prototype AVR

microcontroller based data-acquisition system, was the front end of the control. It

provided knobs and buttons as interfaces to the user to control the synthesis. The

communication was done over OSC. The microcontroller created OSC messages

corresponding to the change of every interface, and sent them over Ethernet.

This was connected to a PC running the Java Mapper server. The server was pre-

configured, by auditioning and listening to the sounds of various parameter sets

on the same system. The server read the inputs using JOE and mapped them to the

corresponding outputs. Every time incoming OSC message caused an output

parameter to change, another OSC message was created and sent over Ethernet to

another PC. This machine ran the Java Synthesis System. JOE was attached as its

communication front end. Thus the messages were parsed and the synthesis

parameter manipulated. Figure 11 shows a representation of the system setup.

Figure 13: Representation of the first setup

Java
Mapper

AVR- Mini
Based

Controller

Java

Synthesis

System
OSC (JOE)/Ethernet

OSC

(JOE)

67

This setup showcased the ability of the system to remotely as well as effectively

control the synthesis. This also proved that the system especially the mapping was

able to work as a distributed system, on various platforms. The various modules

of the control system were able to work synchronously and without any glitches.

7.3.2 Software Controller and an Embedded Mapping

Another setup was tested, using software based controller, and an embedded

mapping scheme. The software based controller was implemented using pd on a

PC. A pd patch was created which output OSC messages according to the inputs

that can be changed using the GUI. For testing purposes, a human user manually

changed these values. The OSC messages were sent out over Ethernet to the same

PC, using a localhost feedback. Although other method of transmission of OSC

messages could have been used, this was the simplest and did not require any

changes to the systems. Figure 14 shows a representation of the system setup.

Figure 14: Representation of the second setup

Java
Mapping

Software
Controller

(pd)

Java
Synthesis

System

OSC (JOE)

Mapping

68

The OSC messages were received by Java Synthesis System with JOE as the

communication front end. The mapping was embedded inside one of the sound

models loaded by Java Synthesis System. This mapping was created using the

Java Mapper tool, using its GUI. It was saved as a file and loaded inside Java

Synthesis System while creating one of the models. This new model itself

controlled multiple smaller models using the mapping, which it defined.

This application showcases the flexibility of the implementation of the mapping

scheme as well as the flexibility of the communication system. The system allows

the mapping to be stand alone server on remote systems as well as embedded into

models to produce higher level sound models which can be used by the synthesis

system itself to gain better control over the synthesis.

69

 CHAPTER 8

Conclusion

8.1 Conclusion

Synthesized sound has a lot of potential to become a standard in many audio

applications, from multimedia and games to compression techniques. However,

the nature of most types of synthesis techniques makes synthesis difficult to

control. The sheer number of parameters and their possible lack of direct

relationship to tangible abstracts in the domain of the user is the limiting factor of

the practicality of most synthesis techniques.

This thesis address this issue by designing and developing a control system that

offers a more expressive and intuitive control over synthesis. This is achieved by a

novel approach to mapping of parameters, using a parameterized morphing

technique. Coupling this with appropriate communication and data-acquisition

systems, yields a flexible and yet effective control system. The modular design of

such systems allows for usage of these systems in other areas related to synthesis.

This also allows further development of each of these systems since they are not

limited by other functionalities.

In conclusion, with better control techniques, sound synthesis can be used to attain

its potential to offer newer and better sound and audio experiences.

8.2 Further Work

70

The modular design of the systems allows them to be improved individually, and

still work in unison. The suggestions for future work on these systems are

discussed individually.

8.2.1 Data-Acquisition System

Subsequent to the development of the system, especially MOE, several

components of uIP-AVR have also been extracted and incorporated into the latest

release of the AVRLib. The consistently clean and efficient libraries of AVRLib

can help improve the readability and efficiency of MOE. This could also offer

greater capabilities to MOE.

There is also a possibility of using interrupt based function calls to emulate

multiple application threads, rather than polling in a tight loop. Synchronization of

the tightly-coupled threads is a major hurdle that needs to be overcome. The use

of lightweight “protothreads” which have recently implemented for AVR can be a

potential alternative implementation.

8.2.2 JOE

There are a few areas for improvement that can be looked at in further work for

JOE. Clock synchronization of the various platforms on which the system can run

is necessary for accurate control of synthesis. This could be done by using NTP

and having the OSC Server keep its own high resolution clock. Drift needs to be

addressed in this case.

71

The speed of parsing can also still be improved. Using more efficient data

structures and some data structure conversions mechanisms such as converting

Multi-Way trees to Binary trees, the increased speed of parsing, especially for

very large address spaces, would make a difference.

Other areas of improvement include adding support for automatic exploration and

configuration of JOE systems over a network, to allow plug-and-play type

capabilities for such devices. Methods for this are discussed further in the next

section.

8.2.3 Java Mapper

One of the possible refinements is to allow user specification of the interpolation

function. A tool that allows users to graphically specify the shape of the

interpolator in real-time will be a useful addition to the tool chain.

Currently, the OSC interface that can be attached to the core in Java Mapper must

be manually specified by the user. This can extended with a tool that can

automatically explore the OSC address spaces of both the controller and

synthesizer. In the case of the synthesizer, the tool could generate an internal

representation of the sound models and their parameters, based on the OSC

address space. This will be a key application for the implementation of a proposed

OSC query scheme [25].

Another improvement to the Java Mapper is a better, and more user friendly GUI,

with simple yet useful addition like colour coding of parts for an intuitive use of

72

the GUI, default OSC message address configuration and movable windows for

ease of use.

73

REFERENCES

[1] Rabenstein R. and Trautmann L., “Digital sound synthesis by physical modeling”

in Proceedings of International Symposium on Image and Signal Processing and

Analysis (ISPA’01) , Pula, Croatia, June 2001.

[2] Chowning J.M. “Digital Sound Synthesis, Aoustics, and Perception a Rich

Intersection in Proceedings of the COST G-6 Conference on Digital Audio

Effects (DAFX-00), Verona, Italy, December 7-9, 2000 DAFX-1

[3] Karjalainen M, Välimäki V and Jánosy Z, “Towards High-Quality Sound

Synthesis of the Guitar and String Instruments” in Proceedings of International

Computer Music Conference, September 10-15, 1993, Tokyo, Japan

[4] Karplus, K; Strong, A “Digital synthesis of plucked-string and drum timbres.”

Computer Music Journal, 7(2), pp. 43-55. 1983

[5] Desainte-Catherine M. and Marchand S. “Structured Additive Synthesis:

Towards a Model of Sound Timbre and Electroacoustic Music Forms”. in

Proceedings of the Inter- national Computer Music Conference (ICMC’99,

Beijing), 1999.

[6] Wyse L. “A Sound Modeling and Synthesis System Designed for Maximum

Usability” in Proceedings of the 2003 International Computer Music Conference

(ICMC2003), Singapore, 2003.

[7] Wanderley M. and Depalle P. “Gestural Control of Sound Synthesis” in

Proceedings of The IEEE, Vol. 92, No. 4, April 2004.

[8] Miller, G.A. “The magic number seven plus or minus two: Some limits on our

capacity for processing information”. Psychological Review. 63, 2, pp 81-97,

1956.

[9] Jensenius A. R., Koehly R., and Wanderley M., “Building low-cost music

controllers.” in Pre-Proceedings, 3rd International Symposium on Computer

Music Modelling and Retrieval, pages 252–256, 2005.

[10] Building a USB sensor interface. Retrieved on 29th March 2006 from

74

http://www.sensorwiki.org/index.php/Building_a_USB_sensor_interface.

[11] I-CubeX. Retrieved on 29th March 2006 from http://infusionsystems.com/.

[12] La Kitchen. Retrieved on 29th March 2006 from http://www.la-kitchen.fr/.

[13] Fl´ety E. and Sirguy M.. “EoBody: a follow-up to AtoMIC Pros technology.” in

Proceedings of the 3rd International Conference on New Interfaces for Musical

Expression (NIME03), 2003. Retrieved on 29th March 2006 from

http://hct.ece.ubc.ca/nime/2003/.

[14] E. Fl´ety, N. Leroy, J. Ravarini, and F. Bevilacqua. Versatile sensor acquisition

system utilizing network technology. In Proceedings of the 4th International

Conference on New Interfaces for Musical Expression (NIME04), 2004.

Retrieved on 29th March 2006 from http://hct.ece.ubc.ca/nime/2004/.

[15] Allison J. T. and Place T. A., “Teabox: A sensor data interface system.” in

Proceedings of the 5th International Conference on New Interfaces for Musical

Expression (NIME05), 2005. Retrieved on 29th March 2006 from

http://hct.ece.ubc.ca/nime/2005/.

[16] Fl´ety E.. “The WiSe box : a multi-performer wireless sensor interface using

WiFi and OSC.” in Proceedings of the 5th International Conference on New

Interfaces for Musical Expression (NIME05), 2005. Retrieved on 29th March

2006 from http://hct.ece.ubc.ca/nime/2005/.

[17] Teleo. Retrieved on 29th March 2006 from

http://www.makingthings.com/teleo.htm.

[18] Wilson S., Gurevich M., Verplank B., and Stang P., “Microcontrollers in music

HCI instruction: Reflections on our switch to the Atmel AVR platform.” in

Proceedings of the 3rd International Conference on New Interfaces for Musical

Expression (NIME03), 2003. Retrieved on 29th March 2006 from

http://hct.ece.ubc.ca/nime/2003/.

[19] Gurevich M., Verplank B., and S. Wilson. “Physical interaction design for

music.” in Proceedings of the 2003 International Computer Music Conference,

Singapore, 2003.

75

[20] MIDI Manufacturers Association. Retrieved on 29th March 2006 from

http://www.midi.org/

[21] Wright M., Freed A., and Momeni A., “OpenSound Control: State of the art

2003.” in Proceedings of the 3rd International Conference on New Interfaces for

Musical Expression (NIME03), 2003. Retrieved on 29th March 2006 from

http://hct.ece.ubc.ca/nime/2003/.

[22] Open SoundControl. Retrieved on 29th March 2006 from

http://www.cnmat.berkeley.edu/OpenSoundControl/

[23] Zimmermann H., “OSI Reference Model-The IS0 Model of Architecture for

Open Systems Interconnection” in IEEE Transactions On Communications, Vol.

Com-28, No. 4, April 1980

[24] Flety E., Leroy N., and Schwarz D., “EtherSense an OpenSoundControl-based

sensor platform”, at OSC Conference, CNMAT, Paris, France, 2004.

[25] Schmeder A. and Wright M. “A Query System for Open Sound Control”, at OSC

Conference, Paris, France, 2004.

[26] pd~ The Pure Data Portal. Retrieved on 29th March 2006 from

http://puredata.info/about

[27] Illposed Software, JavaOsc. Retrieved March 21, 2006, from

http://www.mat.ucsb.edu/~c.ramakr/illposed/JavaOsc.html

[28] flosc : Flash OpenSound Control. Retrieved on 29th March 2006 from

http://www.benchun.net/flosc/

[29] The OpenSound Control Kit. Retrieved on 29th March 2006 from

http://www.cnmat.berkeley.edu/OpenSoundControl/Kit/

[30] CNMAT, OpenSound Control in Max/MSP for Macintosh and Windows.

Retrieved March 21, 2006, from

http://www.cnmat.berkeley.edu/OpenSoundControl/Max/

[31] Chang, S. S. and Zadeh, L. A., “On fuzzy mapping and control.” in Fuzzy Sets,

Fuzzy Logic, and Fuzzy Systems: Selected Papers By Lotfi A. Zadeh, G. J. Klir

and B. Yuan, Eds. World Scientific Series In Advances In Fuzzy Systems, vol. 6.

76

World Scientific Publishing Co., River Edge, NJ, pp 180-184.

[32] Bevilacqua F., Müller R. and Schnell N., “MnM: a Max/MSP mapping toolbox”

in Proceedings of the 2005 International Conference on New Interfaces for

Musical Expression (NIME05), Vancouver, BC, Canada, May 2005.

[33] Momeni A. and Wessel D. “Characterizing and Controlling Musical Material

Intuitively with Geometric Models.” In Proceedings of the of the 2003

International Conference on New Interfaces for Musical Expression (NIME03),

Montreal, Canada, 2003.

[34] Nort D. V., Wanderley M. M., Depalle P. “On the Choice of Mappings Based on

Geometric Properties.” in Proceedings of 2004 International Conference on New

Interfaces for Musical Expression (NIME04), Hamamatsu, Japan, 2004.

[35] Arfib, D., J. M. Couturier, L. Kessous, and V. Verfaille. “Strategies of Mapping

between Gesture data and Synthesis Model Parameters using Perceptual Spaces.”

Organised Sound, 7(2) pp 127-144., 2002

[36] Hunt, A., and M. M. Wanderley. “Mapping Performer Parameters to Synthesis

Engines.” Organised Sound, 7(2) pp 97-108, 2002

[37] Schatter G., Züger E., Nitschke C. A “Synaesthetic approach for a Synthesizer

Interface Based on Genetic Algorithms and Fuzzy Sets.” in Proceedings of the

2003 International Computer Music Conference (ICMC2004), Barcelona, Spain,

2005

[38] Wanderley M. and Depalle P. “Gestural Control of Sound Synthesis” in

Proceedings of The IEEE, Vol. 92, No. 4, April 2004.

[39] Goudeseune C. “Interpolated Mappings for Musical Instruments.” Organised

Sound 7(2) pp 85-96, 2002.

[40] Bencina R. “The Metasurface – Applying Natural Neighbour Interpolation to

Two-to-Many Mapping.” in Proceedings of the 2005 International Conference on

New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada,

2005.

[41] Atmel AVR 8-Bit RISC Overview - high performance low power flash

77

microcontroller. Retrieved on 29th March 2006 from

http://www.atmel.com/products/AVR/overview.asp

[42] Procyon Engineering. Retrieved on 29th March 2006 from

http://www.procyonengineering.com/.

[43] EDTP Electronics. Retrieved on 29th March 2006 from http://www.edtp.com/

[44] RTL8019AS ISA Full-Duplex Ethernet Controller with Plug and Play Function.

Retrieved on 29th March 2006 from

http://www.realtek.com.tw/products/products1-2.aspx?modelid=1

[45] AX88796B -- Low-Pin-Count Non-PCI Single-Chip 8/16-bit 10/100M Fast

Ethernet Controller. Retrieved on 29th March 2006 from

http://www.asix.com.tw/products.php?op=pItemdetail&PItemID=80;65;86&PLi

ne=65

[46] Atmel Corporation, AVR Studio 4. Retrieved on 29th March 2006 from

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725.

[47] WinAVR (AVR GCC). Retrieved on 29th March 2006 from

http://winavr.sourceforge.net/.

[48] M. Wright. Using avr microprocessors under os/x. Retrieved on 29th March 2006

from http://ccrma.stanford.edu/\%7Ematt/avr-osx.htm.

[49] NTP: The Network Time Protocol. Retrieved on 29th March 2006 from

http://www.ntp.org/

[50] Norman D. A. “Some Observations on Mental Models,” in D. Gentner and A. L.

Stevens, Eds., Mental Models, Erlbaum, 1983.

[51] Young R. M. “Surrogates and Mappings: two Kinds of Conceptual Models for

Interactive Devices,” in D. Gentner and A. L. Stevens, Eds., Mental Models,

Erlbaum, 1983

[52] Slaney M., Covell M., and Lassiter B., “Automatic Audio Morphing” in

Proceedings of the International Conference on Acoustics, Speech, and Signal

Processing, Atlanta, GA, May 7-10, 1996.

[53] Altman, E. and Wyse, L. “Emergent Semantics from Media Blending”, in

78

(Srinivasan and Nepal Eds.) Managing Multimedia Semantics. The Idea Group

Inc, 2004.

[54] Rovan J., Wanderley M. M., Dubnov S. and Depalle P. “Instrumental Gestural

Mapping Strategies as Expressivity Determinants in Computer Music

Performance.” Technical Paper, Synthesis Team/Real-Time Systems Group,

IRCAM, France, 1997.

[55] Maxim MAX127. Retrieved on 29th March 2006 from http://www.maxim-

ic.com/quick_view2.cfm/qv_pk/1890

